Mechanotransduction pathways regulating YAP nuclear translocation under Yoda1 and vibration in osteocytes

IF 3.5 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Bone Pub Date : 2024-10-14 DOI:10.1016/j.bone.2024.117283
Chun-Yu Lin , Amel Sassi , Yuning Wu , Kimberly Seaman , Wentian Tang , Xin Song , Raphael Bienenstock , Hiroki Yokota , Yu Sun , Fei Geng , Liyun Wang , Lidan You
{"title":"Mechanotransduction pathways regulating YAP nuclear translocation under Yoda1 and vibration in osteocytes","authors":"Chun-Yu Lin ,&nbsp;Amel Sassi ,&nbsp;Yuning Wu ,&nbsp;Kimberly Seaman ,&nbsp;Wentian Tang ,&nbsp;Xin Song ,&nbsp;Raphael Bienenstock ,&nbsp;Hiroki Yokota ,&nbsp;Yu Sun ,&nbsp;Fei Geng ,&nbsp;Liyun Wang ,&nbsp;Lidan You","doi":"10.1016/j.bone.2024.117283","DOIUrl":null,"url":null,"abstract":"<div><div>Yes-associated protein (YAP) is a mechanosensitive protein crucial for bone remodeling. Although research has identified pathways and components involved in YAP regulation, the precise mechanisms of its localization during Piezo1 activation or vibration remain unclear. Piezo1, a mechanosensitive ion channel, allows calcium ions to flow into cells upon activation. Recent studies suggest that combining Yoda1, a Piezo1 activator, with low-magnitude high-frequency (LMHF) vibration (&gt;30 Hz, &lt;1 g acceleration) enhances YAP nuclear translocation. This combination potentially improves the mechanoresponse and therapeutic efficacy of LMHF vibration in bone cells. This study aims to elucidate how Yoda1 and LMHF vibration regulate mechanosensitive structures and pathways, leading to YAP nuclear translocation in MLO-Y4 osteocyte like cells. We investigated the roles of the cytoskeleton and nuclear envelope (NE) in YAP activation under combined LMHF vibration and Yoda1 treatments. Additionally, we analyzed differentially expressed genes (DEGs) in MLO-Y4 cells subjected to these treatments and in Piezo1 knockdown MLO-Y4 cells exposed to vibration. Our findings indicated that increased YAP nuclear translocation with combined treatment may result from the distinct effects of Yoda1 and vibration. Specifically, Yoda1 influenced YAP through mechanisms involving actin and NE dynamics, while LMHF vibration may modulate YAP via the interleukin 6 (IL6)/signal transducer and activator of transcription 3 (STAT3) axis. This study provides new insights and potential therapeutic targets for osteocyte-related pathologies.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"190 ","pages":"Article 117283"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328224002722","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Yes-associated protein (YAP) is a mechanosensitive protein crucial for bone remodeling. Although research has identified pathways and components involved in YAP regulation, the precise mechanisms of its localization during Piezo1 activation or vibration remain unclear. Piezo1, a mechanosensitive ion channel, allows calcium ions to flow into cells upon activation. Recent studies suggest that combining Yoda1, a Piezo1 activator, with low-magnitude high-frequency (LMHF) vibration (>30 Hz, <1 g acceleration) enhances YAP nuclear translocation. This combination potentially improves the mechanoresponse and therapeutic efficacy of LMHF vibration in bone cells. This study aims to elucidate how Yoda1 and LMHF vibration regulate mechanosensitive structures and pathways, leading to YAP nuclear translocation in MLO-Y4 osteocyte like cells. We investigated the roles of the cytoskeleton and nuclear envelope (NE) in YAP activation under combined LMHF vibration and Yoda1 treatments. Additionally, we analyzed differentially expressed genes (DEGs) in MLO-Y4 cells subjected to these treatments and in Piezo1 knockdown MLO-Y4 cells exposed to vibration. Our findings indicated that increased YAP nuclear translocation with combined treatment may result from the distinct effects of Yoda1 and vibration. Specifically, Yoda1 influenced YAP through mechanisms involving actin and NE dynamics, while LMHF vibration may modulate YAP via the interleukin 6 (IL6)/signal transducer and activator of transcription 3 (STAT3) axis. This study provides new insights and potential therapeutic targets for osteocyte-related pathologies.

Abstract Image

调节 Yoda1 和振动作用下骨细胞中 YAP 核转位的机制传导途径
是相关蛋白(YAP)是一种机械敏感蛋白,对骨重塑至关重要。尽管研究发现了参与 YAP 调节的途径和成分,但其在 Piezo1 激活或振动过程中定位的确切机制仍不清楚。Piezo1 是一种机械敏感性离子通道,可使钙离子在激活时流入细胞。最近的研究表明,将 Piezo1 激活剂 Yoda1 与低幅高频(LMHF)振动(>30 Hz、
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone
Bone 医学-内分泌学与代谢
CiteScore
8.90
自引率
4.90%
发文量
264
审稿时长
30 days
期刊介绍: BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信