Mohaddeseh Abouhosseini Tabari, Masoumeh Houshyar, Atefeh Araghi, Navideh Mirzakhani, Giuseppe Crescenzo, Roberta Cardone, Claudia Zizzadoro
{"title":"Nephroprotective and hepatoprotective effects of lemongrass essential oil and citral on diclofenac-induced toxicity in mice.","authors":"Mohaddeseh Abouhosseini Tabari, Masoumeh Houshyar, Atefeh Araghi, Navideh Mirzakhani, Giuseppe Crescenzo, Roberta Cardone, Claudia Zizzadoro","doi":"10.1016/j.biopha.2024.117541","DOIUrl":null,"url":null,"abstract":"<p><p>The present study was carried out to evaluate and compare the protective potential of two well-known antioxidants of herbal origin in a mouse model of acute DIC-induced nephro- and hepatotoxicity. The tested antioxidants included lemongrass essential oil (LO) and its predominant bioactive constituent citral (CIT). A third herbal product, silymarin (SILY), was used as a reference hepato-renal protective agent. DIC administration led to elevated serum urea and creatinine levels, and prompted oxidative stress along with histopathological changes in the kidney tissue. In parallel, DIC administration increased serum liver enzyme activity, decreased total protein, albumin, and globulin levels, and caused oxidative stress with associated histopathological changes in the liver tissue. Pre-treatment with LO or CIT mitigated DIC-induced alterations in all serum biochemical markers of kidney and liver health (except albumin). High-dose LO, like SILY, within kidney and liver tissues, counteracted DIC-induced oxidative stress and histomorphological alterations. By contrast, CIT failed to mitigate DIC-induced oxidative stress in the kidneys and provided only partial control of DIC-induced oxidative stress in the liver, resulting in less efficient preservation of kidney function and liver structural integrity than LO. Besides confirming the efficacy of SILY at protecting kidneys and liver against the toxicity of DIC in a rodent species different from the one tested so far (rat), this study demonstrated the preventive properties of LO and, to a lesser extent, of CIT against DIC-induced hepato-renal toxicity in mice, supporting their developmental potential as therapeutics.</p>","PeriodicalId":93904,"journal":{"name":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","volume":"180 ","pages":"117541"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biopha.2024.117541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was carried out to evaluate and compare the protective potential of two well-known antioxidants of herbal origin in a mouse model of acute DIC-induced nephro- and hepatotoxicity. The tested antioxidants included lemongrass essential oil (LO) and its predominant bioactive constituent citral (CIT). A third herbal product, silymarin (SILY), was used as a reference hepato-renal protective agent. DIC administration led to elevated serum urea and creatinine levels, and prompted oxidative stress along with histopathological changes in the kidney tissue. In parallel, DIC administration increased serum liver enzyme activity, decreased total protein, albumin, and globulin levels, and caused oxidative stress with associated histopathological changes in the liver tissue. Pre-treatment with LO or CIT mitigated DIC-induced alterations in all serum biochemical markers of kidney and liver health (except albumin). High-dose LO, like SILY, within kidney and liver tissues, counteracted DIC-induced oxidative stress and histomorphological alterations. By contrast, CIT failed to mitigate DIC-induced oxidative stress in the kidneys and provided only partial control of DIC-induced oxidative stress in the liver, resulting in less efficient preservation of kidney function and liver structural integrity than LO. Besides confirming the efficacy of SILY at protecting kidneys and liver against the toxicity of DIC in a rodent species different from the one tested so far (rat), this study demonstrated the preventive properties of LO and, to a lesser extent, of CIT against DIC-induced hepato-renal toxicity in mice, supporting their developmental potential as therapeutics.