TRAITER: transformer-guided diagnosis and prognosis of heart failure using cell nuclear morphology and DNA damage marker.

Hiromu Hayashi, Toshiyuki Ko, Zhehao Dai, Kanna Fujita, Seitaro Nomura, Hiroki Kiyoshima, Shinya Ishihara, Momoko Hamano, Issei Komuro, Yoshihiro Yamanishi
{"title":"TRAITER: transformer-guided diagnosis and prognosis of heart failure using cell nuclear morphology and DNA damage marker.","authors":"Hiromu Hayashi, Toshiyuki Ko, Zhehao Dai, Kanna Fujita, Seitaro Nomura, Hiroki Kiyoshima, Shinya Ishihara, Momoko Hamano, Issei Komuro, Yoshihiro Yamanishi","doi":"10.1093/bioinformatics/btae610","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Heart failure (HF), a major cause of morbidity and mortality, necessitates precise diagnostic and prognostic methods.</p><p><strong>Results: </strong>This study presents a novel deep learning approach, Transformer-based Analysis of Images of Tissue for Effective Remedy (TRAITER), for HF diagnosis and prognosis. Using image segmentation techniques and a Vision Transformer, TRAITER predicts HF likelihood from cardiac tissue cell nuclear morphology images and the potential for left ventricular reverse remodeling (LVRR) from dual-stained images with cell nuclei and DNA damage markers. In HF prediction using 31 158 images from 9 patients, TRAITER achieved 83.1% accuracy. For LVRR prediction with 231 840 images from 46 patients, TRAITER attained 84.2% accuracy for individual images and 92.9% for individual patients. TRAITER outperformed other neural network models in terms of receiver operating characteristics, and precision-recall curves. Our method promises to advance personalized HF medicine decision-making.</p><p><strong>Availability and implementation: </strong>The source code and data are available at the following link: https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Heart failure (HF), a major cause of morbidity and mortality, necessitates precise diagnostic and prognostic methods.

Results: This study presents a novel deep learning approach, Transformer-based Analysis of Images of Tissue for Effective Remedy (TRAITER), for HF diagnosis and prognosis. Using image segmentation techniques and a Vision Transformer, TRAITER predicts HF likelihood from cardiac tissue cell nuclear morphology images and the potential for left ventricular reverse remodeling (LVRR) from dual-stained images with cell nuclei and DNA damage markers. In HF prediction using 31 158 images from 9 patients, TRAITER achieved 83.1% accuracy. For LVRR prediction with 231 840 images from 46 patients, TRAITER attained 84.2% accuracy for individual images and 92.9% for individual patients. TRAITER outperformed other neural network models in terms of receiver operating characteristics, and precision-recall curves. Our method promises to advance personalized HF medicine decision-making.

Availability and implementation: The source code and data are available at the following link: https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.

TRAITER:利用细胞核形态学和 DNA 损伤标记物进行心力衰竭的变构指导诊断和预后。
动机:心力衰竭(HF)是发病和死亡的主要原因,需要精确的诊断和预后方法:心力衰竭(HF)是发病和死亡的主要原因,需要精确的诊断和预后方法:本研究提出了一种新颖的深度学习方法--基于变换器的组织图像有效补救分析(TRAITER),用于心力衰竭的诊断和预后。TRAITER 采用图像分割技术和视觉变换器,从心脏组织细胞核形态图像预测高频的可能性,并从细胞核和 DNA 损伤标记的双重染色图像预测左心室反向重塑(LVRR)的可能性。在使用 9 名患者的 31,158 张图像进行高频预测时,TRAITER 的准确率达到了 83.1%。在使用 46 名患者的 231,840 张图像进行 LVRR 预测时,TRAITER 对单张图像的准确率达到 84.2%,对单个患者的准确率达到 92.9%。TRAITER 在接收者操作特征和精确度-召回曲线方面的表现优于其他神经网络模型。我们的方法有望推动个性化高频医学决策:源代码和数据可从以下链接获取:Https://github.com/HamanoLaboratory/predict-of-HF-and-LVRR.Supplementary information:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信