Derivation and validation of an algorithm to predict transitions from community to residential long-term care among persons with dementia-A retrospective cohort study.

PLOS digital health Pub Date : 2024-10-18 eCollection Date: 2024-10-01 DOI:10.1371/journal.pdig.0000441
Wenshan Li, Luke Turcotte, Amy T Hsu, Robert Talarico, Danial Qureshi, Colleen Webber, Steven Hawken, Peter Tanuseputro, Douglas G Manuel, Greg Huyer
{"title":"Derivation and validation of an algorithm to predict transitions from community to residential long-term care among persons with dementia-A retrospective cohort study.","authors":"Wenshan Li, Luke Turcotte, Amy T Hsu, Robert Talarico, Danial Qureshi, Colleen Webber, Steven Hawken, Peter Tanuseputro, Douglas G Manuel, Greg Huyer","doi":"10.1371/journal.pdig.0000441","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and validate a model to predict time-to-LTC admissions among individuals with dementia.</p><p><strong>Design: </strong>Population-based retrospective cohort study using health administrative data.</p><p><strong>Setting and participants: </strong>Community-dwelling older adults (65+) in Ontario living with dementia and assessed with the Resident Assessment Instrument for Home Care (RAI-HC) between April 1, 2010 and March 31, 2017.</p><p><strong>Methods: </strong>Individuals in the derivation cohort (n = 95,813; assessed before March 31, 2015) were followed for up to 360 days after the index RAI-HC assessment for admission into LTC. We used a multivariable Fine Gray sub-distribution hazard model to predict the cumulative incidence of LTC entry while accounting for all-cause mortality as a competing risk. The model was validated in 34,038 older adults with dementia with an index RAI-HC assessment between April 1, 2015 and March 31, 2017.</p><p><strong>Results: </strong>Within one year of a RAI-HC assessment, 35,513 (37.1%) individuals in the derivation cohort and 10,735 (31.5%) in the validation cohort entered LTC. Our algorithm was well-calibrated (Emax = 0.119, ICIavg = 0.057) and achieved a c-statistic of 0.707 (95% confidence interval: 0.703-0.712) in the validation cohort.</p><p><strong>Conclusions and implications: </strong>We developed an algorithm to predict time to LTC entry among individuals living with dementia. This tool can inform care planning for individuals with dementia and their family caregivers.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 10","pages":"e0000441"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To develop and validate a model to predict time-to-LTC admissions among individuals with dementia.

Design: Population-based retrospective cohort study using health administrative data.

Setting and participants: Community-dwelling older adults (65+) in Ontario living with dementia and assessed with the Resident Assessment Instrument for Home Care (RAI-HC) between April 1, 2010 and March 31, 2017.

Methods: Individuals in the derivation cohort (n = 95,813; assessed before March 31, 2015) were followed for up to 360 days after the index RAI-HC assessment for admission into LTC. We used a multivariable Fine Gray sub-distribution hazard model to predict the cumulative incidence of LTC entry while accounting for all-cause mortality as a competing risk. The model was validated in 34,038 older adults with dementia with an index RAI-HC assessment between April 1, 2015 and March 31, 2017.

Results: Within one year of a RAI-HC assessment, 35,513 (37.1%) individuals in the derivation cohort and 10,735 (31.5%) in the validation cohort entered LTC. Our algorithm was well-calibrated (Emax = 0.119, ICIavg = 0.057) and achieved a c-statistic of 0.707 (95% confidence interval: 0.703-0.712) in the validation cohort.

Conclusions and implications: We developed an algorithm to predict time to LTC entry among individuals living with dementia. This tool can inform care planning for individuals with dementia and their family caregivers.

痴呆症患者从社区向长期住院护理过渡的预测算法的推导和验证--一项回顾性队列研究。
目的开发并验证一个模型,以预测痴呆症患者入住长期护理中心的时间:设计:基于人口的回顾性队列研究,使用健康管理数据:2010年4月1日至2017年3月31日期间,安大略省居住在社区的患有痴呆症的老年人(65岁以上),并使用家庭护理居民评估工具(RAI-HC)进行评估:对衍生队列(n = 95,813;2015 年 3 月 31 日之前评估)中的个人进行了长达 360 天的随访,随访时间为 RAI-HC 评估指数进入 LTC 后的 360 天。我们使用了一个多变量 Fine Gray 子分布危险模型来预测进入 LTC 的累积发病率,同时将全因死亡率作为竞争风险加以考虑。该模型在2015年4月1日至2017年3月31日期间进行了RAI-HC指数评估的34038名老年痴呆症患者中进行了验证:在RAI-HC评估后的一年内,推导队列中有35513人(37.1%)和验证队列中有10735人(31.5%)进入了LTC。我们的算法校准良好(Emax = 0.119,ICIavg = 0.057),验证队列中的 c 统计量为 0.707(95% 置信区间:0.703-0.712):我们开发了一种算法来预测痴呆症患者进入长期护理中心的时间。该工具可为痴呆症患者及其家庭护理者的护理规划提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信