Behavioral Nudging With Generative AI for Content Development in SMS Health Care Interventions: Case Study.

JMIR AI Pub Date : 2024-10-15 DOI:10.2196/52974
Rachel M Harrison, Ekaterina Lapteva, Anton Bibin
{"title":"Behavioral Nudging With Generative AI for Content Development in SMS Health Care Interventions: Case Study.","authors":"Rachel M Harrison, Ekaterina Lapteva, Anton Bibin","doi":"10.2196/52974","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brief message interventions have demonstrated immense promise in health care, yet the development of these messages has suffered from a dearth of transparency and a scarcity of publicly accessible data sets. Moreover, the researcher-driven content creation process has raised resource allocation issues, necessitating a more efficient and transparent approach to content development.</p><p><strong>Objective: </strong>This research sets out to address the challenges of content development for SMS interventions by showcasing the use of generative artificial intelligence (AI) as a tool for content creation, transparently explaining the prompt design and content generation process, and providing the largest publicly available data set of brief messages and source code for future replication of our process.</p><p><strong>Methods: </strong>Leveraging the pretrained large language model GPT-3.5 (OpenAI), we generate a collection of messages in the context of medication adherence for individuals with type 2 diabetes using evidence-derived behavior change techniques identified in a prior systematic review. We create an attributed prompt designed to adhere to content (readability and tone) and SMS (character count and encoder type) standards while encouraging message variability to reflect differences in behavior change techniques.</p><p><strong>Results: </strong>We deliver the most extensive repository of brief messages for a singular health care intervention and the first library of messages crafted with generative AI. In total, our method yields a data set comprising 1150 messages, with 89.91% (n=1034) meeting character length requirements and 80.7% (n=928) meeting readability requirements. Furthermore, our analysis reveals that all messages exhibit diversity comparable to an existing publicly available data set created under the same theoretical framework for a similar setting.</p><p><strong>Conclusions: </strong>This research provides a novel approach to content creation for health care interventions using state-of-the-art generative AI tools. Future research is needed to assess the generated content for ethical, safety, and research standards, as well as to determine whether the intervention is successful in improving the target behaviors.</p>","PeriodicalId":73551,"journal":{"name":"JMIR AI","volume":"3 ","pages":"e52974"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522651/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/52974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Brief message interventions have demonstrated immense promise in health care, yet the development of these messages has suffered from a dearth of transparency and a scarcity of publicly accessible data sets. Moreover, the researcher-driven content creation process has raised resource allocation issues, necessitating a more efficient and transparent approach to content development.

Objective: This research sets out to address the challenges of content development for SMS interventions by showcasing the use of generative artificial intelligence (AI) as a tool for content creation, transparently explaining the prompt design and content generation process, and providing the largest publicly available data set of brief messages and source code for future replication of our process.

Methods: Leveraging the pretrained large language model GPT-3.5 (OpenAI), we generate a collection of messages in the context of medication adherence for individuals with type 2 diabetes using evidence-derived behavior change techniques identified in a prior systematic review. We create an attributed prompt designed to adhere to content (readability and tone) and SMS (character count and encoder type) standards while encouraging message variability to reflect differences in behavior change techniques.

Results: We deliver the most extensive repository of brief messages for a singular health care intervention and the first library of messages crafted with generative AI. In total, our method yields a data set comprising 1150 messages, with 89.91% (n=1034) meeting character length requirements and 80.7% (n=928) meeting readability requirements. Furthermore, our analysis reveals that all messages exhibit diversity comparable to an existing publicly available data set created under the same theoretical framework for a similar setting.

Conclusions: This research provides a novel approach to content creation for health care interventions using state-of-the-art generative AI tools. Future research is needed to assess the generated content for ethical, safety, and research standards, as well as to determine whether the intervention is successful in improving the target behaviors.

利用生成式人工智能进行行为引导,开发短信保健干预内容:案例研究。
背景:简短信息干预已在医疗保健领域展现出巨大的前景,然而,这些信息的开发却缺乏透明度,也缺少可公开获取的数据集。此外,由研究人员主导的内容创作过程也引发了资源分配问题,因此需要一种更高效、更透明的内容开发方法:本研究旨在通过展示将人工智能(AI)作为内容创建工具的使用,透明地解释提示设计和内容创建过程,并提供最大的公开简短信息数据集和源代码,以便将来复制我们的过程,从而解决短信干预内容开发所面临的挑战:利用预训练的大型语言模型 GPT-3.5 (OpenAI),我们使用先前系统综述中确定的循证行为改变技术,为 2 型糖尿病患者生成了一系列有关坚持用药的信息。我们创建了一个归属提示,旨在遵守内容(可读性和语气)和短信(字符数和编码器类型)标准,同时鼓励信息的可变性,以反映行为改变技术的差异:结果:我们为单一的医疗保健干预措施提供了最广泛的简短信息库,并提供了首个使用生成式人工智能制作的信息库。我们的方法总共产生了包含 1150 条信息的数据集,89.91%(n=1034)的信息符合字符长度要求,80.7%(n=928)的信息符合可读性要求。此外,我们的分析表明,所有信息表现出的多样性可与在相同理论框架下为类似环境创建的现有公开数据集相媲美:这项研究为使用最先进的生成式人工智能工具创建医疗干预内容提供了一种新方法。未来的研究需要对生成的内容进行道德、安全和研究标准评估,并确定干预措施是否成功改善了目标行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信