SciJava Ops: an improved algorithms framework for Fiji and beyond.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2024-09-27 eCollection Date: 2024-01-01 DOI:10.3389/fbinf.2024.1435733
Gabriel J Selzer, Curtis T Rueden, Mark C Hiner, Edward L Evans, David Kolb, Marcel Wiedenmann, Christian Birkhold, Tim-Oliver Buchholz, Stefan Helfrich, Brian Northan, Alison Walter, Johannes Schindelin, Tobias Pietzsch, Stephan Saalfeld, Michael R Berthold, Kevin W Eliceiri
{"title":"SciJava Ops: an improved algorithms framework for Fiji and beyond.","authors":"Gabriel J Selzer, Curtis T Rueden, Mark C Hiner, Edward L Evans, David Kolb, Marcel Wiedenmann, Christian Birkhold, Tim-Oliver Buchholz, Stefan Helfrich, Brian Northan, Alison Walter, Johannes Schindelin, Tobias Pietzsch, Stephan Saalfeld, Michael R Berthold, Kevin W Eliceiri","doi":"10.3389/fbinf.2024.1435733","DOIUrl":null,"url":null,"abstract":"<p><p>Decades of iteration on scientific imaging hardware and software has yielded an explosion in not only the size, complexity, and heterogeneity of image datasets but also in the tooling used to analyze this data. This wealth of image analysis tools, spanning different programming languages, frameworks, and data structures, is itself a problem for data analysts who must adapt to new technologies and integrate established routines to solve increasingly complex problems. While many \"bridge\" layers exist to unify pairs of popular tools, there exists a need for a general solution to unify new and existing toolkits. The SciJava Ops library presented here addresses this need through two novel principles. Algorithm implementations are declared as plugins called Ops, providing a uniform interface regardless of the toolkit they came from. Users express their needs declaratively to the Op environment, which can then find and adapt available Ops on demand. By using these principles instead of direct function calls, users can write streamlined workflows while avoiding the translation boilerplate of bridge layers. Developers can easily extend SciJava Ops to introduce new libraries and more efficient, specialized algorithm implementations, even immediately benefitting existing workflows. We provide several use cases showing both user and developer benefits, as well as benchmarking data to quantify the negligible impact on overall analysis performance. We have initially deployed SciJava Ops on the Fiji platform, however it would be suitable for integration with additional analysis platforms in the future.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"4 ","pages":"1435733"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2024.1435733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Decades of iteration on scientific imaging hardware and software has yielded an explosion in not only the size, complexity, and heterogeneity of image datasets but also in the tooling used to analyze this data. This wealth of image analysis tools, spanning different programming languages, frameworks, and data structures, is itself a problem for data analysts who must adapt to new technologies and integrate established routines to solve increasingly complex problems. While many "bridge" layers exist to unify pairs of popular tools, there exists a need for a general solution to unify new and existing toolkits. The SciJava Ops library presented here addresses this need through two novel principles. Algorithm implementations are declared as plugins called Ops, providing a uniform interface regardless of the toolkit they came from. Users express their needs declaratively to the Op environment, which can then find and adapt available Ops on demand. By using these principles instead of direct function calls, users can write streamlined workflows while avoiding the translation boilerplate of bridge layers. Developers can easily extend SciJava Ops to introduce new libraries and more efficient, specialized algorithm implementations, even immediately benefitting existing workflows. We provide several use cases showing both user and developer benefits, as well as benchmarking data to quantify the negligible impact on overall analysis performance. We have initially deployed SciJava Ops on the Fiji platform, however it would be suitable for integration with additional analysis platforms in the future.

SciJava Ops:斐济及其他地区的改进算法框架。
数十年来,科学成像硬件和软件的迭代不仅带来了图像数据集的规模、复杂性和异质性的激增,也带来了用于分析这些数据的工具的激增。丰富的图像分析工具涵盖了不同的编程语言、框架和数据结构,对于数据分析师来说,这本身就是一个问题,他们必须适应新技术并整合已有的例程,以解决日益复杂的问题。虽然有许多 "桥接 "层可以统一流行的工具对,但仍需要一个通用的解决方案来统一新的和现有的工具包。本文介绍的 SciJava Ops 库通过两个新颖的原则满足了这一需求。算法实现被声明为名为 Ops 的插件,无论它们来自哪个工具包,都能提供统一的接口。用户以声明的方式向 Op 环境表达他们的需求,Op 环境就能根据需求找到并调整可用的 Ops。通过使用这些原则而不是直接调用函数,用户可以编写精简的工作流程,同时避免桥接层的翻译模板。开发人员可以轻松扩展 SciJava Ops,以引入新的库和更高效、更专业的算法实现,甚至立即使现有的工作流程受益。我们提供了几个使用案例,展示了用户和开发人员的收益,并提供了基准数据,量化了对整体分析性能的微不足道的影响。我们最初在斐济平台上部署了 SciJava Ops,但它也适合在未来与其他分析平台集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信