{"title":"Insights Into the Molecular Interactions of MIC2 and M2AP: Role of TSR6 and Conservation Across Species.","authors":"Xu Xia, Chenqiang Du, Yang Wang, Gaojie Song","doi":"10.1002/prot.26758","DOIUrl":null,"url":null,"abstract":"<p><p>Microneme protein 2 (MIC2) and its associated protein M2AP are pivotal for the gliding motility and host cell invasion by Toxoplasma gondii. In our prior work, we showed that M2AP binds specifically to the sixth TSR domain of MIC2, with this interaction mediated dominantly by the hotspot residue H620 situated at the center of TSR6. To delve deeper into the functional significance of H620 and explore the dynamic behavior of Y602, we conducted molecular dynamic (MD) simulations of the Toxoplasma TSR6-M2AP complex, encompassing both wild-type and mutant forms. Our findings underscore the critical role of H620 within TSR6, particularly its hydrogen bond interaction with K72 of M2AP. The H620A mutation disrupts the nearby hydrophobic network while minimally affecting other hydrophilic interactions. Furthermore, our data reveal a highly conserved binding pose between M2AP and TSR6 across different species, consistent with previous trans-genera studies, thereby offering insights for future strategies in infection control development.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"620-628"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26758","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microneme protein 2 (MIC2) and its associated protein M2AP are pivotal for the gliding motility and host cell invasion by Toxoplasma gondii. In our prior work, we showed that M2AP binds specifically to the sixth TSR domain of MIC2, with this interaction mediated dominantly by the hotspot residue H620 situated at the center of TSR6. To delve deeper into the functional significance of H620 and explore the dynamic behavior of Y602, we conducted molecular dynamic (MD) simulations of the Toxoplasma TSR6-M2AP complex, encompassing both wild-type and mutant forms. Our findings underscore the critical role of H620 within TSR6, particularly its hydrogen bond interaction with K72 of M2AP. The H620A mutation disrupts the nearby hydrophobic network while minimally affecting other hydrophilic interactions. Furthermore, our data reveal a highly conserved binding pose between M2AP and TSR6 across different species, consistent with previous trans-genera studies, thereby offering insights for future strategies in infection control development.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.