Fuqiang Yuan, Xu Han, Masha Huang, Yinglin Su, Yiting Zhang, Mengyuan Hu, Xiang Yu, Weilai Jin, Yun Li, Le Zhang
{"title":"The Human Milk-derived Peptide Drives Rapid Regulation of Macrophage Inflammation Responses in the Neonatal Intestine.","authors":"Fuqiang Yuan, Xu Han, Masha Huang, Yinglin Su, Yiting Zhang, Mengyuan Hu, Xiang Yu, Weilai Jin, Yun Li, Le Zhang","doi":"10.1016/j.jcmgh.2024.101420","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>The interactions between human milk and the regulation of innate immune homeostasis in newborns, and their impact on intestinal health, are not fully understood. This study aimed to explore the role of peptides in human milk extracellular vesicles (EVs) in this process.</p><p><strong>Methods: </strong>A comprehensive screening of peptides within human milk EVs was performed, leading to the identification of a beta-casein-derived peptide (CASB<sub>135-150</sub>). The effects of CASB<sub>135-150</sub> on intestinal injury were evaluated in a rat necrotizing enterocolitis (NEC) model. Immunofluorescence analysis was used to determine its distribution, and its impact on NF-κB signaling and inflammation was studied in bone marrow-derived macrophages (BMDMs) and intestinal macrophages. Protein-protein interaction (PPI) analysis, single-cell RNA-seq (scRNA-seq), and co-immunoprecipitation (co-IP) experiments were conducted to explore the mechanism underlying CASB<sub>135-150</sub> function.</p><p><strong>Results: </strong>CASB<sub>135-150</sub> significantly mitigated intestinal injury in the rat NEC model. Immunofluorescence analysis revealed that CASB<sub>135-150</sub> could target intestinal macrophages and rapidly inhibited NF-κB signaling and reduced inflammation. ScRNA-seq analyses indicated a strong association between FHL2 and NEC development, and co-IP confirmed the interaction between CASB<sub>135-150</sub> and FHL2. CASB<sub>135-150</sub> disrupted the FHL2/TRAF6 complex, reducing TRAF6 protein levels. Mutation of key amino acids in CASB<sub>135-150</sub> disrupted its interaction with FHL2 and abolished its ability to inhibit NF-κB signaling, which also prevented its protective effect in vivo. RNA-seq of intestinal tissue further highlighted the impact of CASB<sub>135-150</sub> on the NF-κB signaling pathway.</p><p><strong>Conclusions: </strong>Our study identifies CASB<sub>135-150</sub>, a novel peptide in human milk EVs, that rapidly regulates macrophage inflammatory responses and protects against NEC-induced intestinal injury. These findings provide new insights into the role of human milk in modulating the infant immune system and intestinal health.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101420"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcmgh.2024.101420","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aims: The interactions between human milk and the regulation of innate immune homeostasis in newborns, and their impact on intestinal health, are not fully understood. This study aimed to explore the role of peptides in human milk extracellular vesicles (EVs) in this process.
Methods: A comprehensive screening of peptides within human milk EVs was performed, leading to the identification of a beta-casein-derived peptide (CASB135-150). The effects of CASB135-150 on intestinal injury were evaluated in a rat necrotizing enterocolitis (NEC) model. Immunofluorescence analysis was used to determine its distribution, and its impact on NF-κB signaling and inflammation was studied in bone marrow-derived macrophages (BMDMs) and intestinal macrophages. Protein-protein interaction (PPI) analysis, single-cell RNA-seq (scRNA-seq), and co-immunoprecipitation (co-IP) experiments were conducted to explore the mechanism underlying CASB135-150 function.
Results: CASB135-150 significantly mitigated intestinal injury in the rat NEC model. Immunofluorescence analysis revealed that CASB135-150 could target intestinal macrophages and rapidly inhibited NF-κB signaling and reduced inflammation. ScRNA-seq analyses indicated a strong association between FHL2 and NEC development, and co-IP confirmed the interaction between CASB135-150 and FHL2. CASB135-150 disrupted the FHL2/TRAF6 complex, reducing TRAF6 protein levels. Mutation of key amino acids in CASB135-150 disrupted its interaction with FHL2 and abolished its ability to inhibit NF-κB signaling, which also prevented its protective effect in vivo. RNA-seq of intestinal tissue further highlighted the impact of CASB135-150 on the NF-κB signaling pathway.
Conclusions: Our study identifies CASB135-150, a novel peptide in human milk EVs, that rapidly regulates macrophage inflammatory responses and protects against NEC-induced intestinal injury. These findings provide new insights into the role of human milk in modulating the infant immune system and intestinal health.
期刊介绍:
"Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology.
CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.