Persistent Mayer Dirac.

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Journal of Physics Complexity Pub Date : 2024-12-01 Epub Date: 2024-10-17 DOI:10.1088/2632-072X/ad83a5
Faisal Suwayyid, Guo-Wei Wei
{"title":"Persistent Mayer Dirac.","authors":"Faisal Suwayyid, Guo-Wei Wei","doi":"10.1088/2632-072X/ad83a5","DOIUrl":null,"url":null,"abstract":"<p><p>Topological data analysis (TDA) has made significant progress in developing a new class of fundamental operators known as the Dirac operator, particularly in topological signals and molecular representations. However, the current approaches being used are based on the classical case of chain complexes. The present study establishes Mayer Dirac operators based on <i>N</i>-chain complexes. These operators interconnect an alternating sequence of Mayer Laplacian operators, providing a generalization of the classical result <math> <mrow><msup><mi>D</mi> <mn>2</mn></msup> <mo>=</mo> <mi>L</mi></mrow> </math> . Furthermore, the research presents an explicit formulation of the Laplacian for <i>N</i>-chain complexes induced by vertex sequences on a finite set. Weighted versions of Mayer Laplacian and Dirac operators are introduced to expand the scope and improve applicability, showcasing their effectiveness in capturing physical attributes in various practical scenarios. The study presents a generalized version for factorizing Laplacian operators as an operator's product and its 'adjoint'. Additionally, the proposed persistent Mayer Dirac operators and extensions are applied to biological and chemical domains, particularly in the analysis of molecular structures. The study also highlights the potential applications of persistent Mayer Dirac operators in data science.</p>","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"5 4","pages":"045005"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488505/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/ad83a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Topological data analysis (TDA) has made significant progress in developing a new class of fundamental operators known as the Dirac operator, particularly in topological signals and molecular representations. However, the current approaches being used are based on the classical case of chain complexes. The present study establishes Mayer Dirac operators based on N-chain complexes. These operators interconnect an alternating sequence of Mayer Laplacian operators, providing a generalization of the classical result D 2 = L . Furthermore, the research presents an explicit formulation of the Laplacian for N-chain complexes induced by vertex sequences on a finite set. Weighted versions of Mayer Laplacian and Dirac operators are introduced to expand the scope and improve applicability, showcasing their effectiveness in capturing physical attributes in various practical scenarios. The study presents a generalized version for factorizing Laplacian operators as an operator's product and its 'adjoint'. Additionally, the proposed persistent Mayer Dirac operators and extensions are applied to biological and chemical domains, particularly in the analysis of molecular structures. The study also highlights the potential applications of persistent Mayer Dirac operators in data science.

坚持不懈的迈尔-狄拉克
拓扑数据分析(TDA)在开发一类新的基本算子(即狄拉克算子)方面取得了重大进展,特别是在拓扑信号和分子表征方面。然而,目前使用的方法都是基于链复合物的经典情况。本研究建立了基于 N 链复合物的梅耶-狄拉克算子。这些算子与梅耶拉普拉斯算子的交替序列相互连接,从而对经典结果 D 2 = L 进行了概括。此外,研究还提出了有限集顶点序列诱导的 N 链复数拉普拉斯的明确表述。研究还引入了梅耶拉普拉斯算子和狄拉克算子的加权版本,以扩大范围和提高适用性,展示它们在各种实际场景中捕捉物理属性的有效性。研究提出了将拉普拉斯算子因数化为算子乘积及其 "邻接 "的通用版本。此外,还将提出的持久性梅耶狄拉克算子及其扩展应用于生物和化学领域,特别是分子结构分析。研究还强调了持久性梅耶-狄拉克算子在数据科学中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信