BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2024-09-01 Epub Date: 2024-08-05 DOI:10.1214/24-aoas1897
Yue Wang, Bin Nan, John D Kalbfleisch
{"title":"BIVARIATE FUNCTIONAL PATTERNS OF LIFETIME MEDICARE COSTS AMONG ESRD PATIENTS.","authors":"Yue Wang, Bin Nan, John D Kalbfleisch","doi":"10.1214/24-aoas1897","DOIUrl":null,"url":null,"abstract":"<p><p>In this work we study the lifetime Medicare spending patterns of patients with end-stage renal disease (ESRD). We extract the information of patients who started their ESRD services in 2007-2011 from the United States Renal Data System (USRDS). Patients are partitioned into three groups based on their kidney transplant status: 1-unwaitlisted and never transplanted, 2-waitlisted but never transplanted, and 3-waitlisted and then transplanted. To study their Medicare cost trajectories, we use a semiparametric regression model with both fixed and bivariate time-varying coefficients to compare groups 1 and 2, and a bivariate time-varying coefficient model with different starting times (time since the first ESRD service and time since the kidney transplant) to compare groups 2 and 3. In addition to demographics and other medical conditions, these regression models are conditional on the survival time, which ideally depict the lifetime Medicare spending patterns. For estimation, we extend the profile weighted least squares (PWLS) estimator to longitudinal data for the first comparison and propose a two-stage estimating method for the second comparison. We use sandwich variance estimators to construct confidence intervals and validate inference procedures through simulations. Our analysis of the Medicare claims data reveals that waitlisting is associated with a lower daily medical cost at the beginning of ESRD service among waitlisted patients which gradually increases over time. Averaging over lifespan, however, there is no difference between waitlisted and unwaitlisted groups. A kidney transplant, on the other hand, reduces the medical cost significantly after an initial spike.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"18 3","pages":"2596-2614"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488692/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-aoas1897","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study the lifetime Medicare spending patterns of patients with end-stage renal disease (ESRD). We extract the information of patients who started their ESRD services in 2007-2011 from the United States Renal Data System (USRDS). Patients are partitioned into three groups based on their kidney transplant status: 1-unwaitlisted and never transplanted, 2-waitlisted but never transplanted, and 3-waitlisted and then transplanted. To study their Medicare cost trajectories, we use a semiparametric regression model with both fixed and bivariate time-varying coefficients to compare groups 1 and 2, and a bivariate time-varying coefficient model with different starting times (time since the first ESRD service and time since the kidney transplant) to compare groups 2 and 3. In addition to demographics and other medical conditions, these regression models are conditional on the survival time, which ideally depict the lifetime Medicare spending patterns. For estimation, we extend the profile weighted least squares (PWLS) estimator to longitudinal data for the first comparison and propose a two-stage estimating method for the second comparison. We use sandwich variance estimators to construct confidence intervals and validate inference procedures through simulations. Our analysis of the Medicare claims data reveals that waitlisting is associated with a lower daily medical cost at the beginning of ESRD service among waitlisted patients which gradually increases over time. Averaging over lifespan, however, there is no difference between waitlisted and unwaitlisted groups. A kidney transplant, on the other hand, reduces the medical cost significantly after an initial spike.

ESD 患者终身医疗保险费用的双变量功能模式。
在这项工作中,我们研究了终末期肾病(ESRD)患者的终生医疗保险支出模式。我们从美国肾脏数据系统(USRDS)中提取了 2007-2011 年开始接受 ESRD 服务的患者信息。根据患者的肾移植状态将其分为三组:1-未列入等待名单且从未移植;2-列入等待名单但从未移植;3-列入等待名单后移植。为了研究他们的医疗保险费用轨迹,我们使用了一个具有固定系数和双变量时变系数的半参数回归模型来比较第 1 组和第 2 组,以及一个具有不同起始时间(首次 ESRD 服务起始时间和肾移植起始时间)的双变量时变系数模型来比较第 2 组和第 3 组。除人口统计学和其他医疗条件外,这些回归模型还以生存时间为条件,从而理想地描绘出医疗保险的终生支出模式。在估算时,我们将剖面加权最小二乘法(PWLS)估算器扩展到纵向数据,用于第一组比较,并为第二组比较提出了两阶段估算方法。我们使用三明治方差估计器构建置信区间,并通过模拟验证推断程序。我们对医疗保险理赔数据的分析表明,在 ESRD 服务开始时,候补患者的每日医疗费用较低,而随着时间的推移,这一费用会逐渐增加。然而,从生命周期的平均值来看,候诊组和未候诊组之间并无差异。另一方面,肾移植在最初的峰值之后会显著降低医疗费用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信