{"title":"Noval insights and therapeutic strategies for tumor-induced kidney pathologies.","authors":"Meng Wang, Yong Han, Chao Zhang","doi":"10.1186/s13046-024-03205-6","DOIUrl":null,"url":null,"abstract":"<p><p>Recent progress in elucidating the role of specific antidiuretic hormones in Drosophila models has provided valuable insights into the mechanisms underlying tumor-induced renal dysfunction. Xu et al. identified the mammalian neurokinin 3 receptor (TACR3), a homolog of the G protein-coupled receptor TkR99D in fruit flies, as a potential therapeutic target for alleviating renal tubular dysfunction in mice with malignant neoplasms. Here, we commented on these findings by emphasizing the structural and evolutionary significance of TACR3 and provided an in-depth analysis of cell type specific expression of TACR3 in response to renal injury and expressional dynamics during renal carcinoma progression. The implications of these findings for transforming the therapeutic approaches to renal complications associated with oncological disorders were highlighted. We also acknowledged the limitations of current experimental models in this study and emphasized the necessary clinical validation in the future. These insights could contribute to the advancement of diagnostic and therapeutic strategies for treating tumor-related renal pathologies.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"289"},"PeriodicalIF":11.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490039/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03205-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent progress in elucidating the role of specific antidiuretic hormones in Drosophila models has provided valuable insights into the mechanisms underlying tumor-induced renal dysfunction. Xu et al. identified the mammalian neurokinin 3 receptor (TACR3), a homolog of the G protein-coupled receptor TkR99D in fruit flies, as a potential therapeutic target for alleviating renal tubular dysfunction in mice with malignant neoplasms. Here, we commented on these findings by emphasizing the structural and evolutionary significance of TACR3 and provided an in-depth analysis of cell type specific expression of TACR3 in response to renal injury and expressional dynamics during renal carcinoma progression. The implications of these findings for transforming the therapeutic approaches to renal complications associated with oncological disorders were highlighted. We also acknowledged the limitations of current experimental models in this study and emphasized the necessary clinical validation in the future. These insights could contribute to the advancement of diagnostic and therapeutic strategies for treating tumor-related renal pathologies.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.