EthoWatcher OS: improving the reproducibility and quality of categorical and morphologic/kinematic data from behavioral recordings in laboratory animals.
IF 2.6 4区 医学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"EthoWatcher OS: improving the reproducibility and quality of categorical and morphologic/kinematic data from behavioral recordings in laboratory animals.","authors":"João Antônio Marcolan, José Marino-Neto","doi":"10.1007/s11517-024-03212-x","DOIUrl":null,"url":null,"abstract":"<p><p>Behavioral recordings annotated by human observers (HOs) from video recordings are a fundamental component of preclinical animal behavioral models of neurobiological diseases. These models are often criticized for their vulnerability to reproducibility issues. Here, we present the EthoWatcher-Open Source (EW-OS), with tools and procedures for the use of blind-to-condition categorical transcriptions that are simultaneous with tracking, for the assessment of HOs intra- and interobserver reliability during training and data collection, for producing video clips of samples of behavioral categories that are useful for observer training. The use of these tools can inform and optimize the performance of observers, thus favoring the reproducibility of the data obtained. Categorical and machine vision-derived outputs are presented in an open data format for increased interoperability with other applications, where behavioral categories are associated frame-by-frame with tracking, morphological and kinematic attributes of an animal's image. The center of mass (X and Y pixel coordinates), the animal's area in square millimeters, the length and width in millimeters, and the angle in degrees were recorded. It also assesses the variation in each morphological descriptor to produce kinematic descriptors. While the initial measurements are in pixels, they are later converted to millimeters using the scale calibrated by the user via the graphical user interfaces. This process enables the creation of databases suitable for machine learning processing and behavioral pharmacology studies. EW-OS is constructed for continued collaborative development, available through an open-source platform, to support initiatives toward the adoption of good scientific practices in behavioral analysis, including tools for evaluating the quality of the data that can alleviate problems associated with low reproducibility in the behavioral sciences.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03212-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Behavioral recordings annotated by human observers (HOs) from video recordings are a fundamental component of preclinical animal behavioral models of neurobiological diseases. These models are often criticized for their vulnerability to reproducibility issues. Here, we present the EthoWatcher-Open Source (EW-OS), with tools and procedures for the use of blind-to-condition categorical transcriptions that are simultaneous with tracking, for the assessment of HOs intra- and interobserver reliability during training and data collection, for producing video clips of samples of behavioral categories that are useful for observer training. The use of these tools can inform and optimize the performance of observers, thus favoring the reproducibility of the data obtained. Categorical and machine vision-derived outputs are presented in an open data format for increased interoperability with other applications, where behavioral categories are associated frame-by-frame with tracking, morphological and kinematic attributes of an animal's image. The center of mass (X and Y pixel coordinates), the animal's area in square millimeters, the length and width in millimeters, and the angle in degrees were recorded. It also assesses the variation in each morphological descriptor to produce kinematic descriptors. While the initial measurements are in pixels, they are later converted to millimeters using the scale calibrated by the user via the graphical user interfaces. This process enables the creation of databases suitable for machine learning processing and behavioral pharmacology studies. EW-OS is constructed for continued collaborative development, available through an open-source platform, to support initiatives toward the adoption of good scientific practices in behavioral analysis, including tools for evaluating the quality of the data that can alleviate problems associated with low reproducibility in the behavioral sciences.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).