8-Oxoguanine DNA Glycosylase1 conceals oxidized guanine in nucleoprotein-associated RNA of respiratory syncytial virus.

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2024-10-16 eCollection Date: 2024-10-01 DOI:10.1371/journal.ppat.1012616
Lang Pan, Ke Wang, Wenjing Hao, Yaoyao Xue, Xu Zheng, Ritwika S Basu, Tapas K Hazra, Azharul Islam, Yashoda Hosakote, Bing Tian, Matthieu G Gagnon, Xueqing Ba, Istvan Boldogh
{"title":"8-Oxoguanine DNA Glycosylase1 conceals oxidized guanine in nucleoprotein-associated RNA of respiratory syncytial virus.","authors":"Lang Pan, Ke Wang, Wenjing Hao, Yaoyao Xue, Xu Zheng, Ritwika S Basu, Tapas K Hazra, Azharul Islam, Yashoda Hosakote, Bing Tian, Matthieu G Gagnon, Xueqing Ba, Istvan Boldogh","doi":"10.1371/journal.ppat.1012616","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory syncytial virus (RSV), along with other prominent respiratory RNA viruses such as influenza and SARS-CoV-2, significantly contributes to the global incidence of respiratory tract infections. These pathogens induce the production of reactive oxygen species (ROS), which play a crucial role in the onset and progression of respiratory diseases. However, the mechanisms by which viral RNA manages ROS-induced base oxidation remain poorly understood. Here, we reveal that 8-oxo-7,8-dihydroguanine (8-oxoGua) is not merely an incidental byproduct of ROS activity but serves as a strategic adaptation of RSV RNA to maintain genetic fidelity by hijacking the 8-oxoguanine DNA glycosylase 1 (OGG1). Through RNA immunoprecipitation and next-generation sequencing, we discovered that OGG1 binding sites are predominantly found in the RSV antigenome, especially within guanine-rich sequences. Further investigation revealed that viral ribonucleoprotein complexes specifically exploit OGG1. Importantly, inhibiting OGG1's ability to recognize 8-oxoGua significantly decreases RSV progeny production. Our results underscore the viral replication machinery's adaptation to oxidative challenges, suggesting that inhibiting OGG1's reading function could be a novel strategy for antiviral intervention.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 10","pages":"e1012616"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012616","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory syncytial virus (RSV), along with other prominent respiratory RNA viruses such as influenza and SARS-CoV-2, significantly contributes to the global incidence of respiratory tract infections. These pathogens induce the production of reactive oxygen species (ROS), which play a crucial role in the onset and progression of respiratory diseases. However, the mechanisms by which viral RNA manages ROS-induced base oxidation remain poorly understood. Here, we reveal that 8-oxo-7,8-dihydroguanine (8-oxoGua) is not merely an incidental byproduct of ROS activity but serves as a strategic adaptation of RSV RNA to maintain genetic fidelity by hijacking the 8-oxoguanine DNA glycosylase 1 (OGG1). Through RNA immunoprecipitation and next-generation sequencing, we discovered that OGG1 binding sites are predominantly found in the RSV antigenome, especially within guanine-rich sequences. Further investigation revealed that viral ribonucleoprotein complexes specifically exploit OGG1. Importantly, inhibiting OGG1's ability to recognize 8-oxoGua significantly decreases RSV progeny production. Our results underscore the viral replication machinery's adaptation to oxidative challenges, suggesting that inhibiting OGG1's reading function could be a novel strategy for antiviral intervention.

8-Oxoguanine DNA Glycosylase1 隐藏了呼吸道合胞病毒核蛋白相关 RNA 中的氧化鸟嘌呤。
呼吸道合胞病毒(RSV)与流感、SARS-CoV-2 等其他主要呼吸道 RNA 病毒一起,是全球呼吸道感染发病率的主要原因。这些病原体会诱导产生活性氧(ROS),而活性氧在呼吸道疾病的发生和发展过程中起着至关重要的作用。然而,人们对病毒 RNA 管理 ROS 诱导的碱基氧化的机制仍然知之甚少。在这里,我们揭示了 8-氧代-7,8-二氢鸟嘌呤(8-oxoGua)不仅仅是 ROS 活性的偶然副产物,而是 RSV RNA 通过劫持 8-氧代鸟嘌呤 DNA 糖基化酶 1(OGG1)来保持遗传忠实性的策略性适应。通过 RNA 免疫沉淀和新一代测序,我们发现 OGG1 结合位点主要存在于 RSV 抗原组中,尤其是富含鸟嘌呤的序列中。进一步研究发现,病毒核糖核蛋白复合物专门利用了 OGG1。重要的是,抑制 OGG1 识别 8-oxoGua 的能力可显著减少 RSV 后代的产生。我们的研究结果强调了病毒复制机制对氧化挑战的适应性,表明抑制 OGG1 的阅读功能可能是一种新型的抗病毒干预策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信