Critical dimension for hydrodynamic turbulence.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Mahendra K Verma
{"title":"Critical dimension for hydrodynamic turbulence.","authors":"Mahendra K Verma","doi":"10.1103/PhysRevE.110.035102","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrodynamic turbulence exhibits nonequilibrium behavior with k^{-5/3} energy spectrum, and equilibrium behavior with k^{d-1} energy spectrum and zero viscosity, where d is the space dimension. Using recursive renormalization group in Craya-Herring basis, we show that the nonequilibrium solution is valid only for d<6, whereas equilibrium solution with zero viscosity is the only solution for d>6. Thus, d=6 is the critical dimension for hydrodynamic turbulence. In addition, we show that the energy flux changes sign from positive to negative near d=2.15. We also compute the energy flux and Kolmogorov's constants for various d's, and observe that our results are in good agreement with past numerical results.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.035102","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrodynamic turbulence exhibits nonequilibrium behavior with k^{-5/3} energy spectrum, and equilibrium behavior with k^{d-1} energy spectrum and zero viscosity, where d is the space dimension. Using recursive renormalization group in Craya-Herring basis, we show that the nonequilibrium solution is valid only for d<6, whereas equilibrium solution with zero viscosity is the only solution for d>6. Thus, d=6 is the critical dimension for hydrodynamic turbulence. In addition, we show that the energy flux changes sign from positive to negative near d=2.15. We also compute the energy flux and Kolmogorov's constants for various d's, and observe that our results are in good agreement with past numerical results.

流体动力湍流的临界维度。
水动力湍流表现出 k^{-5/3} 能谱的非平衡行为,以及 k^{d-1} 能谱和零粘度(d 为空间维数)的平衡行为。利用克拉亚-赫林基递推重正化群,我们证明了非平衡解仅对 d6 有效。因此,d=6 是流体动力湍流的临界维度。此外,我们还证明了在 d=2.15 附近,能量通量的符号由正变负。我们还计算了不同 d 的能量通量和科尔莫哥罗夫常数,发现我们的结果与过去的数值结果非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信