Generative AI with WGAN-GP for boosting seizure detection accuracy.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-10-02 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1437315
Lina Abou-Abbas, Khadidja Henni, Imene Jemal, Neila Mezghani
{"title":"Generative AI with WGAN-GP for boosting seizure detection accuracy.","authors":"Lina Abou-Abbas, Khadidja Henni, Imene Jemal, Neila Mezghani","doi":"10.3389/frai.2024.1437315","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Imbalanced datasets pose challenges for developing accurate seizure detection systems based on electroencephalogram (EEG) data. Generative AI techniques may help augment minority class data to facilitate automatic epileptic seizure detection.</p><p><strong>New method: </strong>This study investigates the impact of various data augmentation (DA) approaches, including Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), Vanilla GAN, Conditional GAN (CGAN), and Cramer GAN, on classification performance with Random Forest models. The best-performing GAN variant, WGAN-GP, was then integrated with a bidirectional Long Short-Term Memory (LSTM) architecture and compared against traditional and synthetic oversampling methods.</p><p><strong>Results: </strong>The evaluation of different GAN variants for data augmentation with Random Forest classifiers identified WGAN-GP as the most effective approach. The integration of WGAN-GP with bidirectional LSTM yielded substantial performance improvements, outperforming traditional oversampling methods and achieving an accuracy of 91.73% on the augmented data, compared to 86% accuracy on real data without augmentation.</p><p><strong>Comparison with existing methods: </strong>The proposed generative AI approach combining WGAN-GP and recurrent neural network models outperforms comparative synthetic oversampling methods on metrics relevant for reliable seizure detection from imbalanced EEG datasets.</p><p><strong>Conclusions: </strong>Incorporating the WGAN-GP generative AI technique for data augmentation and integrating it with bidirectional LSTM elevates seizure detection accuracy for imbalanced EEG datasets, surpassing the performance of traditional oversampling and class weight adjustment methods. This approach shows promise for improving epilepsy monitoring and management through enhanced automated detection system effectiveness.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1437315"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480023/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1437315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Imbalanced datasets pose challenges for developing accurate seizure detection systems based on electroencephalogram (EEG) data. Generative AI techniques may help augment minority class data to facilitate automatic epileptic seizure detection.

New method: This study investigates the impact of various data augmentation (DA) approaches, including Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), Vanilla GAN, Conditional GAN (CGAN), and Cramer GAN, on classification performance with Random Forest models. The best-performing GAN variant, WGAN-GP, was then integrated with a bidirectional Long Short-Term Memory (LSTM) architecture and compared against traditional and synthetic oversampling methods.

Results: The evaluation of different GAN variants for data augmentation with Random Forest classifiers identified WGAN-GP as the most effective approach. The integration of WGAN-GP with bidirectional LSTM yielded substantial performance improvements, outperforming traditional oversampling methods and achieving an accuracy of 91.73% on the augmented data, compared to 86% accuracy on real data without augmentation.

Comparison with existing methods: The proposed generative AI approach combining WGAN-GP and recurrent neural network models outperforms comparative synthetic oversampling methods on metrics relevant for reliable seizure detection from imbalanced EEG datasets.

Conclusions: Incorporating the WGAN-GP generative AI technique for data augmentation and integrating it with bidirectional LSTM elevates seizure detection accuracy for imbalanced EEG datasets, surpassing the performance of traditional oversampling and class weight adjustment methods. This approach shows promise for improving epilepsy monitoring and management through enhanced automated detection system effectiveness.

利用 WGAN-GP 生成人工智能,提高癫痫发作检测的准确性。
背景:不平衡的数据集为开发基于脑电图(EEG)数据的准确癫痫发作检测系统带来了挑战。生成式人工智能技术可帮助增强少数类数据,从而促进癫痫发作的自动检测:本研究调查了各种数据增强(DA)方法对随机森林模型分类性能的影响,这些方法包括带梯度惩罚的瓦瑟斯坦生成对抗网络(WGAN-GP)、香草 GAN、条件 GAN(CGAN)和 Cramer GAN。然后,将性能最佳的 GAN 变体 WGAN-GP 与双向长短期记忆(LSTM)架构集成,并与传统和合成超采样方法进行比较:结果:对不同的 GAN 变体与随机森林分类器进行数据扩增的评估结果表明,WGAN-GP 是最有效的方法。WGAN-GP 与双向 LSTM 的整合带来了显著的性能提升,超越了传统的超采样方法,在增强数据上的准确率达到 91.73%,而在未增强的真实数据上的准确率为 86%:与现有方法的比较:结合 WGAN-GP 和递归神经网络模型的生成式人工智能方法在不平衡脑电图数据集癫痫发作检测的相关指标上优于合成超采样方法:采用 WGAN-GP 生成式人工智能技术进行数据扩增,并将其与双向 LSTM 相结合,可提高不平衡脑电图数据集的癫痫发作检测准确率,其性能超过了传统的超采样和类权重调整方法。这种方法有望通过增强自动检测系统的有效性来改善癫痫监测和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信