Anomaly detection via Gumbel Noise Score Matching.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-09-24 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1441205
Ahsan Mahmood, Junier Oliva, Martin Andreas Styner
{"title":"Anomaly detection via Gumbel Noise Score Matching.","authors":"Ahsan Mahmood, Junier Oliva, Martin Andreas Styner","doi":"10.3389/frai.2024.1441205","DOIUrl":null,"url":null,"abstract":"<p><p>We propose Gumbel Noise Score Matching (GNSM), a novel unsupervised method to detect anomalies in categorical data. GNSM accomplishes this by estimating the scores, i.e., the gradients of log likelihoods w.r.t. inputs, of continuously relaxed categorical distributions. We test our method on a suite of anomaly detection tabular datasets. GNSM achieves a consistently high performance across all experiments. We further demonstrate the flexibility of GNSM by applying it to image data where the model is tasked to detect poor segmentation predictions. Images ranked anomalous by GNSM show clear segmentation failures, with the anomaly scores strongly correlating with segmentation metrics computed on ground-truth. We outline the score matching training objective utilized by GNSM and provide an open-source implementation of our work.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1441205"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1441205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We propose Gumbel Noise Score Matching (GNSM), a novel unsupervised method to detect anomalies in categorical data. GNSM accomplishes this by estimating the scores, i.e., the gradients of log likelihoods w.r.t. inputs, of continuously relaxed categorical distributions. We test our method on a suite of anomaly detection tabular datasets. GNSM achieves a consistently high performance across all experiments. We further demonstrate the flexibility of GNSM by applying it to image data where the model is tasked to detect poor segmentation predictions. Images ranked anomalous by GNSM show clear segmentation failures, with the anomaly scores strongly correlating with segmentation metrics computed on ground-truth. We outline the score matching training objective utilized by GNSM and provide an open-source implementation of our work.

通过 Gumbel Noise Score Matching 进行异常检测。
我们提出的 Gumbel Noise Score Matching(GNSM)是一种新型的无监督方法,用于检测分类数据中的异常情况。GNSM 通过估算连续松弛分类分布的分数(即输入时的对数似然梯度)来实现这一目标。我们在一套异常检测表格数据集上测试了我们的方法。在所有实验中,GNSM 始终保持着较高的性能。通过将 GNSM 应用于图像数据,我们进一步证明了 GNSM 的灵活性。被 GNSM 评为异常的图像显示出明显的分割失败,异常分数与根据地面实况计算的分割指标密切相关。我们概述了 GNSM 使用的分数匹配训练目标,并提供了我们工作的开源实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信