Marta Chierichetti, Riccardo Cristofani, Valeria Crippa, Veronica Ferrari, Marta Cozzi, Elena Casarotto, Paola Pramaggiore, Laura Cornaggia, Guglielmo Patelli, Ali Mohamed, Margherita Piccolella, Mariarita Galbiati, Paola Rusmini, Barbara Tedesco, Angelo Poletti
{"title":"Small heat shock protein B8: from cell functions to its involvement in diseases and potential therapeutic applications.","authors":"Marta Chierichetti, Riccardo Cristofani, Valeria Crippa, Veronica Ferrari, Marta Cozzi, Elena Casarotto, Paola Pramaggiore, Laura Cornaggia, Guglielmo Patelli, Ali Mohamed, Margherita Piccolella, Mariarita Galbiati, Paola Rusmini, Barbara Tedesco, Angelo Poletti","doi":"10.4103/NRR.NRR-D-24-00517","DOIUrl":null,"url":null,"abstract":"<p><p>Heat shock protein family B (small) member 8 (HSPB8) is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins. HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation, cell division, and migration. HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy. In line with this function, the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation. In cancer, HSPB8 has a dual role being capable of exerting either a pro- or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation. Moreover, HSPB8 exerts a protective function in different diseases by modulating the inflammatory response, which characterizes not only neurodegenerative diseases, but also other chronic or acute conditions affecting the nervous system, such as multiple sclerosis and intracerebellar hemorrhage. Of note, HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases. This is the case of cognitive impairment related to diabetes mellitus, in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis. This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions, focusing on the beneficial effects of its modulation. Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed, emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"2872-2886"},"PeriodicalIF":5.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-00517","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heat shock protein family B (small) member 8 (HSPB8) is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins. HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation, cell division, and migration. HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy. In line with this function, the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation. In cancer, HSPB8 has a dual role being capable of exerting either a pro- or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation. Moreover, HSPB8 exerts a protective function in different diseases by modulating the inflammatory response, which characterizes not only neurodegenerative diseases, but also other chronic or acute conditions affecting the nervous system, such as multiple sclerosis and intracerebellar hemorrhage. Of note, HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases. This is the case of cognitive impairment related to diabetes mellitus, in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis. This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions, focusing on the beneficial effects of its modulation. Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed, emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.