Hepatitis B Virus X Protein Contributes to Hepatocellular Carcinoma via Upregulation of KIAA1429 Methyltransferase and mRNA m6A Hypermethylation of HSPG2/Perlecan.
Enakshi Sivasudhan, Jingxian Zhou, Jiongming Ma, Yuanyuan Wang, Siying Liu, Faez Iqbal Khan, Zhiliang Lu, Jia Meng, Neil Blake, Rong Rong
{"title":"Hepatitis B Virus X Protein Contributes to Hepatocellular Carcinoma via Upregulation of KIAA1429 Methyltransferase and mRNA m6A Hypermethylation of HSPG2/Perlecan.","authors":"Enakshi Sivasudhan, Jingxian Zhou, Jiongming Ma, Yuanyuan Wang, Siying Liu, Faez Iqbal Khan, Zhiliang Lu, Jia Meng, Neil Blake, Rong Rong","doi":"10.1002/mc.23830","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic hepatitis B virus (HBV) remains to be the most common risk factor of hepatocellular carcinoma (HCC). While previous work has primarily focussed on understanding the direct and indirect mechanisms of Hepatitis B virus X protein (HBx)-mediated hepatocarcinogenesis, from genetic and epigenetic perspectives, its influence on RNA modification mediated onset of liver malignancies is less well understood. This study explored the role of HBV-encoded HBx in altering the m6A methylome profile and its implications on the pathogenesis of HCC. We established HBx-expressing stable HCC cell lines, Huh7-HBx and HepG2-HBx, and explored the transcriptomic and epitranscriptomic profiles by RNA-seq and MeRIP-seq, respectively. Preliminary results suggest that HBx promotes liver cell proliferation, migration, survival and overall m6A methylation in HCC cells and is involved in modulating the extracellular matrix. We show that HBx mediates liver cell transformation by upregulating KIAA1429 methyltransferase. HBx also drives the expression and hypermethylation of the extracellular matrix protein HSPG2/Perlecan and promotes tumourigenesis. Furthermore, we observed a potential interaction between KIAA1429 and HSPG2 in HCC liver cancer cells and demands further investigation.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23830","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic hepatitis B virus (HBV) remains to be the most common risk factor of hepatocellular carcinoma (HCC). While previous work has primarily focussed on understanding the direct and indirect mechanisms of Hepatitis B virus X protein (HBx)-mediated hepatocarcinogenesis, from genetic and epigenetic perspectives, its influence on RNA modification mediated onset of liver malignancies is less well understood. This study explored the role of HBV-encoded HBx in altering the m6A methylome profile and its implications on the pathogenesis of HCC. We established HBx-expressing stable HCC cell lines, Huh7-HBx and HepG2-HBx, and explored the transcriptomic and epitranscriptomic profiles by RNA-seq and MeRIP-seq, respectively. Preliminary results suggest that HBx promotes liver cell proliferation, migration, survival and overall m6A methylation in HCC cells and is involved in modulating the extracellular matrix. We show that HBx mediates liver cell transformation by upregulating KIAA1429 methyltransferase. HBx also drives the expression and hypermethylation of the extracellular matrix protein HSPG2/Perlecan and promotes tumourigenesis. Furthermore, we observed a potential interaction between KIAA1429 and HSPG2 in HCC liver cancer cells and demands further investigation.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.