{"title":"Accelerating de novo SINE annotation in plant and animal genomes.","authors":"Herui Liao, Yanni Sun, Shujun Ou","doi":"10.1186/s13100-024-00331-y","DOIUrl":null,"url":null,"abstract":"<p><p>Genome annotation is an important but challenging task. Accurate identification of short interspersed nuclear elements (SINEs) is particularly difficult due to their lack of highly conserved sequences. AnnoSINE is state-of-the-art software for annotating SINEs in plant genomes, but it is computationally inefficient for large genomes. Moreover, its applicability to animals is limited due to the absence of animal pHMMs in its HMM library. Therefore, we propose AnnoSINE_v2, which extends accurate SINE annotation for animal genomes with greatly optimized computational efficiency. Our results show that AnnoSINE_v2's annotation of SINEs has over 20% higher F1-score compared to the existing tools on animal genomes and enables the processing of complicated genomes, like human and zebrafish, which were beyond the capabilities of AnnoSINE_v1. AnnoSINE_v2 is freely available on Conda and GitHub: https://github.com/liaoherui/AnnoSINE_v2 .</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490119/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-024-00331-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genome annotation is an important but challenging task. Accurate identification of short interspersed nuclear elements (SINEs) is particularly difficult due to their lack of highly conserved sequences. AnnoSINE is state-of-the-art software for annotating SINEs in plant genomes, but it is computationally inefficient for large genomes. Moreover, its applicability to animals is limited due to the absence of animal pHMMs in its HMM library. Therefore, we propose AnnoSINE_v2, which extends accurate SINE annotation for animal genomes with greatly optimized computational efficiency. Our results show that AnnoSINE_v2's annotation of SINEs has over 20% higher F1-score compared to the existing tools on animal genomes and enables the processing of complicated genomes, like human and zebrafish, which were beyond the capabilities of AnnoSINE_v1. AnnoSINE_v2 is freely available on Conda and GitHub: https://github.com/liaoherui/AnnoSINE_v2 .
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.