Praveen Kumar, James E Johnson, Thomas McGowan, Matthew C Chambers, Mohammad Heydarian, Subina Mehta, Caleb Easterly, Timothy J Griffin, Pratik D Jagtap
{"title":"Discovering Novel Proteoforms Using Proteogenomic Workflows Within the Galaxy Bioinformatics Platform.","authors":"Praveen Kumar, James E Johnson, Thomas McGowan, Matthew C Chambers, Mohammad Heydarian, Subina Mehta, Caleb Easterly, Timothy J Griffin, Pratik D Jagtap","doi":"10.1007/978-1-0716-4152-1_7","DOIUrl":null,"url":null,"abstract":"<p><p>Proteogenomics is a growing \"multi-omics\" research area that combines mass spectrometry-based proteomics and high-throughput nucleotide sequencing technologies. Proteogenomics has helped in genomic annotation for organisms whose complete genome sequences became available by using high-throughput DNA sequencing technologies. Apart from genome annotation, this multi-omics approach has also helped researchers confirm expression of variant proteins belonging to unique proteoforms that could have resulted from single-nucleotide polymorphism (SNP), insertion and deletions (Indels), splice isoforms, or other genome or transcriptome variations.A proteogenomic study depends on a multistep informatics workflow, requiring different software at each step. These integrated steps include creating an appropriate protein sequence database, matching spectral data against these sequences, and finally identifying peptide sequences corresponding to novel proteoforms followed by variant classification and functional analysis. The disparate software required for a proteogenomic study is difficult for most researchers to access and use, especially those lacking computational expertise. Furthermore, using them disjointedly can be error-prone as it requires setting up individual parameters for each software. Consequently, reproducibility suffers. Managing output files from each software is an additional challenge. One solution for these challenges in proteogenomics is the open-source Web-based computational platform Galaxy. Its capability to create and manage workflows comprised of disparate software while recording and saving all important parameters promotes both usability and reproducibility. Here, we describe a workflow that can perform proteogenomic analysis on a Galaxy-based platform. This Galaxy workflow facilitates matching of spectral data with a customized protein sequence database, identifying novel protein variants, assessing quality of results, and classifying variants along with visualization against the genome.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2859 ","pages":"109-128"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4152-1_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Proteogenomics is a growing "multi-omics" research area that combines mass spectrometry-based proteomics and high-throughput nucleotide sequencing technologies. Proteogenomics has helped in genomic annotation for organisms whose complete genome sequences became available by using high-throughput DNA sequencing technologies. Apart from genome annotation, this multi-omics approach has also helped researchers confirm expression of variant proteins belonging to unique proteoforms that could have resulted from single-nucleotide polymorphism (SNP), insertion and deletions (Indels), splice isoforms, or other genome or transcriptome variations.A proteogenomic study depends on a multistep informatics workflow, requiring different software at each step. These integrated steps include creating an appropriate protein sequence database, matching spectral data against these sequences, and finally identifying peptide sequences corresponding to novel proteoforms followed by variant classification and functional analysis. The disparate software required for a proteogenomic study is difficult for most researchers to access and use, especially those lacking computational expertise. Furthermore, using them disjointedly can be error-prone as it requires setting up individual parameters for each software. Consequently, reproducibility suffers. Managing output files from each software is an additional challenge. One solution for these challenges in proteogenomics is the open-source Web-based computational platform Galaxy. Its capability to create and manage workflows comprised of disparate software while recording and saving all important parameters promotes both usability and reproducibility. Here, we describe a workflow that can perform proteogenomic analysis on a Galaxy-based platform. This Galaxy workflow facilitates matching of spectral data with a customized protein sequence database, identifying novel protein variants, assessing quality of results, and classifying variants along with visualization against the genome.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.