The Canadian VirusSeq Data Portal and Duotang: open resources for SARS-CoV-2 viral sequences and genomic epidemiology.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
Erin E Gill, Baofeng Jia, Carmen Lia Murall, Raphaël Poujol, Muhammad Zohaib Anwar, Nithu Sara John, Justin Richardsson, Ashley Hobb, Abayomi S Olabode, Alexandru Lepsa, Ana T Duggan, Andrea D Tyler, Arnaud N'Guessan, Atul Kachru, Brandon Chan, Catherine Yoshida, Christina K Yung, David Bujold, Dusan Andric, Edmund Su, Emma J Griffiths, Gary Van Domselaar, Gordon W Jolly, Heather K E Ward, Henrich Feher, Jared Baker, Jared T Simpson, Jaser Uddin, Jiannis Ragoussis, Jon Eubank, Jörg H Fritz, José Héctor Gálvez, Karen Fang, Kim Cullion, Leonardo Rivera, Linda Xiang, Matthew A Croxen, Mitchell Shiell, Natalie Prystajecky, Pierre-Olivier Quirion, Rosita Bajari, Samantha Rich, Samira Mubareka, Sandrine Moreira, Scott Cain, Steven G Sutcliffe, Susanne A Kraemer, Yelizar Alturmessov, Yann Joly, Cphln Consortium, CanCOGeN Consortium, VirusSeq Data Portal Academic And Health Network, Marc Fiume, Terrance P Snutch, Cindy Bell, Catalina Lopez-Correa, Julie G Hussin, Jeffrey B Joy, Caroline Colijn, Paul M K Gordon, William W L Hsiao, Art F Y Poon, Natalie C Knox, Mélanie Courtot, Lincoln Stein, Sarah P Otto, Guillaume Bourque, B Jesse Shapiro, Fiona S L Brinkman
{"title":"The Canadian VirusSeq Data Portal and Duotang: open resources for SARS-CoV-2 viral sequences and genomic epidemiology.","authors":"Erin E Gill, Baofeng Jia, Carmen Lia Murall, Raphaël Poujol, Muhammad Zohaib Anwar, Nithu Sara John, Justin Richardsson, Ashley Hobb, Abayomi S Olabode, Alexandru Lepsa, Ana T Duggan, Andrea D Tyler, Arnaud N'Guessan, Atul Kachru, Brandon Chan, Catherine Yoshida, Christina K Yung, David Bujold, Dusan Andric, Edmund Su, Emma J Griffiths, Gary Van Domselaar, Gordon W Jolly, Heather K E Ward, Henrich Feher, Jared Baker, Jared T Simpson, Jaser Uddin, Jiannis Ragoussis, Jon Eubank, Jörg H Fritz, José Héctor Gálvez, Karen Fang, Kim Cullion, Leonardo Rivera, Linda Xiang, Matthew A Croxen, Mitchell Shiell, Natalie Prystajecky, Pierre-Olivier Quirion, Rosita Bajari, Samantha Rich, Samira Mubareka, Sandrine Moreira, Scott Cain, Steven G Sutcliffe, Susanne A Kraemer, Yelizar Alturmessov, Yann Joly, Cphln Consortium, CanCOGeN Consortium, VirusSeq Data Portal Academic And Health Network, Marc Fiume, Terrance P Snutch, Cindy Bell, Catalina Lopez-Correa, Julie G Hussin, Jeffrey B Joy, Caroline Colijn, Paul M K Gordon, William W L Hsiao, Art F Y Poon, Natalie C Knox, Mélanie Courtot, Lincoln Stein, Sarah P Otto, Guillaume Bourque, B Jesse Shapiro, Fiona S L Brinkman","doi":"10.1099/mgen.0.001293","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic led to a large global effort to sequence SARS-CoV-2 genomes from patient samples to track viral evolution and inform the public health response. Millions of SARS-CoV-2 genome sequences have been deposited in global public repositories. The Canadian COVID-19 Genomics Network (CanCOGeN - VirusSeq), a consortium tasked with coordinating expanded sequencing of SARS-CoV-2 genomes across Canada early in the pandemic, created the Canadian VirusSeq Data Portal, with associated data pipelines and procedures, to support these efforts. The goal of VirusSeq was to allow open access to Canadian SARS-CoV-2 genomic sequences and enhanced, standardized contextual data that were unavailable in other repositories and that meet FAIR standards (Findable, Accessible, Interoperable and Reusable). In addition, the portal data submission pipeline contains data quality checking procedures and appropriate acknowledgement of data generators that encourages collaboration. From inception to execution, the portal was developed with a conscientious focus on strong data governance principles and practices. Extensive efforts ensured a commitment to Canadian privacy laws, data security standards, and organizational processes. This portal has been coupled with other resources, such as Viral AI, and was further leveraged by the Coronavirus Variants Rapid Response Network (CoVaRR-Net) to produce a suite of continually updated analytical tools and notebooks. Here we highlight this portal (https://virusseq-dataportal.ca/), including its contextual data not available elsewhere, and the Duotang (https://covarr-net.github.io/duotang/duotang.html), a web platform that presents key genomic epidemiology and modelling analyses on circulating and emerging SARS-CoV-2 variants in Canada. Duotang presents dynamic changes in variant composition of SARS-CoV-2 in Canada and by province, estimates variant growth, and displays complementary interactive visualizations, with a text overview of the current situation. The VirusSeq Data Portal and Duotang resources, alongside additional analyses and resources computed from the portal (COVID-MVP, CoVizu), are all open source and freely available. Together, they provide an updated picture of SARS-CoV-2 evolution to spur scientific discussions, inform public discourse, and support communication with and within public health authorities. They also serve as a framework for other jurisdictions interested in open, collaborative sequence data sharing and analyses.</p>","PeriodicalId":18487,"journal":{"name":"Microbial Genomics","volume":"10 10","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mgen.0.001293","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic led to a large global effort to sequence SARS-CoV-2 genomes from patient samples to track viral evolution and inform the public health response. Millions of SARS-CoV-2 genome sequences have been deposited in global public repositories. The Canadian COVID-19 Genomics Network (CanCOGeN - VirusSeq), a consortium tasked with coordinating expanded sequencing of SARS-CoV-2 genomes across Canada early in the pandemic, created the Canadian VirusSeq Data Portal, with associated data pipelines and procedures, to support these efforts. The goal of VirusSeq was to allow open access to Canadian SARS-CoV-2 genomic sequences and enhanced, standardized contextual data that were unavailable in other repositories and that meet FAIR standards (Findable, Accessible, Interoperable and Reusable). In addition, the portal data submission pipeline contains data quality checking procedures and appropriate acknowledgement of data generators that encourages collaboration. From inception to execution, the portal was developed with a conscientious focus on strong data governance principles and practices. Extensive efforts ensured a commitment to Canadian privacy laws, data security standards, and organizational processes. This portal has been coupled with other resources, such as Viral AI, and was further leveraged by the Coronavirus Variants Rapid Response Network (CoVaRR-Net) to produce a suite of continually updated analytical tools and notebooks. Here we highlight this portal (https://virusseq-dataportal.ca/), including its contextual data not available elsewhere, and the Duotang (https://covarr-net.github.io/duotang/duotang.html), a web platform that presents key genomic epidemiology and modelling analyses on circulating and emerging SARS-CoV-2 variants in Canada. Duotang presents dynamic changes in variant composition of SARS-CoV-2 in Canada and by province, estimates variant growth, and displays complementary interactive visualizations, with a text overview of the current situation. The VirusSeq Data Portal and Duotang resources, alongside additional analyses and resources computed from the portal (COVID-MVP, CoVizu), are all open source and freely available. Together, they provide an updated picture of SARS-CoV-2 evolution to spur scientific discussions, inform public discourse, and support communication with and within public health authorities. They also serve as a framework for other jurisdictions interested in open, collaborative sequence data sharing and analyses.

加拿大 VirusSeq 数据门户和 Duotang:SARS-CoV-2 病毒序列和基因组流行病学开放资源。
在 COVID-19 大流行的推动下,全球开展了大规模的工作,对患者样本中的 SARS-CoV-2 基因组进行测序,以追踪病毒的演变并为公共卫生应对措施提供信息。数百万个 SARS-CoV-2 基因组序列已存入全球公共资料库。加拿大 COVID-19 基因组学网络(CanCOGeN - VirusSeq)是一个联盟,其任务是在疫情早期协调扩大加拿大各地的 SARS-CoV-2 基因组测序工作,该联盟创建了加拿大 VirusSeq 数据门户网站以及相关的数据管道和程序,以支持这些工作。VirusSeq 的目标是允许公开访问加拿大的 SARS-CoV-2 基因组序列和增强的标准化背景数据,这些数据在其他资源库中无法获得,并且符合 FAIR 标准(可查找、可访问、可互操作和可重复使用)。此外,门户网站的数据提交管道包含数据质量检查程序和对数据生成者的适当确认,以鼓励合作。门户网站的开发从一开始到执行,都非常注重强有力的数据管理原则和实践。大量的努力确保了对加拿大隐私法、数据安全标准和组织流程的承诺。该门户网站与病毒 AI 等其他资源相结合,并进一步利用冠状病毒变异体快速反应网络(CoVaRR-Net)来制作一套持续更新的分析工具和笔记本。在此,我们重点介绍这个门户网站(https://virusseq-dataportal.ca/),包括其在其他地方无法获得的背景数据,以及 Duotang(https://covarr-net.github.io/duotang/duotang.html),这是一个网络平台,提供有关加拿大流行的和新出现的 SARS-CoV-2 变异体的关键基因组流行病学和模型分析。Duotang 介绍了加拿大和各省 SARS-CoV-2 变异体组成的动态变化,估计了变异体的增长情况,显示了互补的交互式可视化效果,并提供了当前情况的文字概览。VirusSeq Data Portal 和 Duotang 资源,以及从门户网站计算出的其他分析和资源(COVID-MVP、CoVizu)都是开放源码,可免费获取。它们共同提供了 SARS-CoV-2 演变的最新情况,以促进科学讨论,为公众讨论提供信息,并支持与公共卫生部门的沟通以及公共卫生部门内部的沟通。它们还为其他对开放、协作性序列数据共享和分析感兴趣的辖区提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Genomics
Microbial Genomics Medicine-Epidemiology
CiteScore
6.60
自引率
2.60%
发文量
153
审稿时长
12 weeks
期刊介绍: Microbial Genomics (MGen) is a fully open access, mandatory open data and peer-reviewed journal publishing high-profile original research on archaea, bacteria, microbial eukaryotes and viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信