{"title":"Theoretical modeling and parameter identification of balanced armature loudspeakers.","authors":"Wei Liu, Jie Huang, Jiazheng Cheng, Yong Shen","doi":"10.1121/10.0030465","DOIUrl":null,"url":null,"abstract":"<p><p>Theoretical modeling and parameter identification are essential for optimizing loudspeaker performance and enabling active control. Although relevant theories for moving-coil loudspeakers are well-developed, accurate theoretical modeling and parameter identification methods for balanced armature loudspeakers (BALs) are scant. This study proposes a model using the equivalent circuit method (ECM) for BALs, with consideration of the armature-suspension coupling as well as the non-piston vibration of the diaphragm. Based on the proposed ECM model, a time-domain identification algorithm utilizing measured voltage, current, and displacement data is established to identify the necessary parameters. Employing the theoretical model and proposed identification method, the model parameters of two different BALs are measured. Comparisons between experimental and numerical results demonstrate the accuracy and effectiveness of the proposed model and identification method in predicting impedance, displacement, and sound pressure responses.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0030465","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Theoretical modeling and parameter identification are essential for optimizing loudspeaker performance and enabling active control. Although relevant theories for moving-coil loudspeakers are well-developed, accurate theoretical modeling and parameter identification methods for balanced armature loudspeakers (BALs) are scant. This study proposes a model using the equivalent circuit method (ECM) for BALs, with consideration of the armature-suspension coupling as well as the non-piston vibration of the diaphragm. Based on the proposed ECM model, a time-domain identification algorithm utilizing measured voltage, current, and displacement data is established to identify the necessary parameters. Employing the theoretical model and proposed identification method, the model parameters of two different BALs are measured. Comparisons between experimental and numerical results demonstrate the accuracy and effectiveness of the proposed model and identification method in predicting impedance, displacement, and sound pressure responses.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.