Wenzhuo Yu , Xu Jia , Han Qiao , Di Liu , Yan Sun , Rong Yan , Chenglong Zhang , Na Yu , Yiping Song , Mingying Ling , Zhen Zhang , Xuehui Li , Chuanli Zhao , Yanqiu Xing
{"title":"Phosphoproteomic analysis reveals the mechanisms of human umbilical cord mesenchymal stem cell-derived exosomes attenuate renal aging","authors":"Wenzhuo Yu , Xu Jia , Han Qiao , Di Liu , Yan Sun , Rong Yan , Chenglong Zhang , Na Yu , Yiping Song , Mingying Ling , Zhen Zhang , Xuehui Li , Chuanli Zhao , Yanqiu Xing","doi":"10.1016/j.jprot.2024.105335","DOIUrl":null,"url":null,"abstract":"<div><div>Aging is a critical biological process, with particularly notable impacts on the kidneys. Exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) are capable of transferring various bioactive molecules, which exhibit beneficial therapeutic effects on kidney diseases. This study demonstrates that exosomes derived from hUC-MSCs ameliorate cellular senescence in the kidneys of naturally aging mice. These exosomes reduce the protein expression of senescence markers and senescence-associated secretory phenotypes (SASP) leading to fewer DNA damage foci and increased expression of the proliferation indicator Ki67. During the aging process, many proteins undergo phosphorylation modifications. We utilized data-independent acquisition (DIA) phosphoproteomics to study kidneys of naturally aging mice and those treated with hUC-MSC-derived exosomes. We observed elevated phosphorylation levels of the differentially phosphorylated proteins, Lamin A/C, at Ser390 and Ser392 sites, which were subsequently verified by western blotting. Overall, this study provides a new molecular characterization of hUC-MSC-derived exosomes in mitigating cellular senescence in the kidneys.</div></div><div><h3>Significance</h3><div>DIA phosphoproteomics was employed to investigate phosphorylated proteins in the kidney tissues of naturally aging mice with hUCMSC-exos treated. The results demonstrated that the DIA technique detected a higher abundance of phosphorylated proteins. We identified 24 significantly differentially phosphorylated proteins, and found that the phosphorylation of specific Lamin A/C sites is crucial for preventing cellular senescence. This study will help to better reveal the related phosphorylated proteins involved in hUCMSC-exos intervention in the kidneys of naturally aging mice, providing a foundation for future research on specific phosphorylation sites of proteins as potential therapeutic targets for renal aging-related diseases.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874391924002677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is a critical biological process, with particularly notable impacts on the kidneys. Exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) are capable of transferring various bioactive molecules, which exhibit beneficial therapeutic effects on kidney diseases. This study demonstrates that exosomes derived from hUC-MSCs ameliorate cellular senescence in the kidneys of naturally aging mice. These exosomes reduce the protein expression of senescence markers and senescence-associated secretory phenotypes (SASP) leading to fewer DNA damage foci and increased expression of the proliferation indicator Ki67. During the aging process, many proteins undergo phosphorylation modifications. We utilized data-independent acquisition (DIA) phosphoproteomics to study kidneys of naturally aging mice and those treated with hUC-MSC-derived exosomes. We observed elevated phosphorylation levels of the differentially phosphorylated proteins, Lamin A/C, at Ser390 and Ser392 sites, which were subsequently verified by western blotting. Overall, this study provides a new molecular characterization of hUC-MSC-derived exosomes in mitigating cellular senescence in the kidneys.
Significance
DIA phosphoproteomics was employed to investigate phosphorylated proteins in the kidney tissues of naturally aging mice with hUCMSC-exos treated. The results demonstrated that the DIA technique detected a higher abundance of phosphorylated proteins. We identified 24 significantly differentially phosphorylated proteins, and found that the phosphorylation of specific Lamin A/C sites is crucial for preventing cellular senescence. This study will help to better reveal the related phosphorylated proteins involved in hUCMSC-exos intervention in the kidneys of naturally aging mice, providing a foundation for future research on specific phosphorylation sites of proteins as potential therapeutic targets for renal aging-related diseases.