{"title":"Targeting Human Papillomavirus 33 E2 DNA Binding Domain With Polyphenols: Unveiling Interactions Through Biophysical and In Silico Methods.","authors":"Bharti, Maya S Nair","doi":"10.1002/jmr.3106","DOIUrl":null,"url":null,"abstract":"<p><p>The human papillomavirus (HPV) 33 is a high-risk strain that causes lesions with potential cancerous outcomes. Its E2 protein regulates the viral protein transcription and life cycle maintenance. The DNA binding domain (DBD) of the E2 protein plays a crucial role in the viral life cycle. The DBD region of the E2 protein is particularly interesting for targeting and finding potential inhibitors to inhibit its function or dimerization. Given the limited research on HPV 33 and its proteins, the present work delved into the interaction of two natural polyphenolic compounds, resveratrol, and baicalein, with the E2 DBD of HPV 33 using biophysical and in silico studies. Fluorescence studies of the E2 DBD-polyphenol complexes showed fluorescence quenching with a binding constant of the order of 10<sup>6</sup> M<sup>-1</sup>. Circular dichroism data reveal conformational changes upon binding with the polyphenols, possibly due to distinct binding sites of the E2 DBD. Differential scanning calorimetry exhibited higher melting temperatures for the two complexes than alone DBD, suggesting the complexes' stability. ITC experiment suggested favorable binding reactions with k<sub>d</sub> values in the micromolar range. Molecular docking and dynamic simulation studies revealed that the resveratrol binds to the helical region and baicalein near the central dimeric interface of E2 DBD with a good binding affinity, forming a stable protein-ligand complex during the run of 100 ns simulation. Therefore, the current study identifies both polyphenolic compounds as promising candidates for potential antiviral drug development.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jmr.3106","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human papillomavirus (HPV) 33 is a high-risk strain that causes lesions with potential cancerous outcomes. Its E2 protein regulates the viral protein transcription and life cycle maintenance. The DNA binding domain (DBD) of the E2 protein plays a crucial role in the viral life cycle. The DBD region of the E2 protein is particularly interesting for targeting and finding potential inhibitors to inhibit its function or dimerization. Given the limited research on HPV 33 and its proteins, the present work delved into the interaction of two natural polyphenolic compounds, resveratrol, and baicalein, with the E2 DBD of HPV 33 using biophysical and in silico studies. Fluorescence studies of the E2 DBD-polyphenol complexes showed fluorescence quenching with a binding constant of the order of 106 M-1. Circular dichroism data reveal conformational changes upon binding with the polyphenols, possibly due to distinct binding sites of the E2 DBD. Differential scanning calorimetry exhibited higher melting temperatures for the two complexes than alone DBD, suggesting the complexes' stability. ITC experiment suggested favorable binding reactions with kd values in the micromolar range. Molecular docking and dynamic simulation studies revealed that the resveratrol binds to the helical region and baicalein near the central dimeric interface of E2 DBD with a good binding affinity, forming a stable protein-ligand complex during the run of 100 ns simulation. Therefore, the current study identifies both polyphenolic compounds as promising candidates for potential antiviral drug development.
期刊介绍:
Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches.
The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.