{"title":"High Capacity and Reversible Fragile Watermarking Method for Medical Image Authentication and Patient Data Hiding.","authors":"Riadh Bouarroudj, Fatma Zohra Bellala, Feryel Souami","doi":"10.1007/s10916-024-02110-x","DOIUrl":null,"url":null,"abstract":"<p><p>The exchange of medical images and patient data over the internet has attracted considerable attention in the past decade, driven by advancements in communication and health services. However, transferring confidential data through insecure channels, such as the internet, exposes it to potential manipulations and attacks. To ensure the authenticity of medical images while concealing patient data within them, this paper introduces a high-capacity and reversible fragile watermarking model in which an authentication watermark is initially generated from the cover image and merged with the patient's information, photo, and medical report to form the global watermark. This watermark is subsequently encrypted using the chaotic Chen system technique, enhancing the model's security and ensuring patient data confidentiality. The cover image then undergoes a Discrete Fourier Transform (DFT) and the encrypted watermark is inserted into the frequency coefficients using a new embedding technique. The experimental results demonstrate that the proposed method achieves great watermarked image quality, with a PSNR exceeding 113 dB and an SSIM close to 1, while maintaining a high embedding capacity of 3 BPP (Bits Per Pixel) and offering perfect reversibility. Furthermore, the proposed model demonstrates high sensitivity to attacks, successfully detecting tampering in all 18 tested attacks, and achieves nearly perfect watermark extraction accuracy, with a Bit Error Rate (BER) of 0.0004%. This high watermark extraction accuracy is crucial in our situation where patient data need to be retrieved from the watermarked images with almost no alteration.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"48 1","pages":"98"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02110-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The exchange of medical images and patient data over the internet has attracted considerable attention in the past decade, driven by advancements in communication and health services. However, transferring confidential data through insecure channels, such as the internet, exposes it to potential manipulations and attacks. To ensure the authenticity of medical images while concealing patient data within them, this paper introduces a high-capacity and reversible fragile watermarking model in which an authentication watermark is initially generated from the cover image and merged with the patient's information, photo, and medical report to form the global watermark. This watermark is subsequently encrypted using the chaotic Chen system technique, enhancing the model's security and ensuring patient data confidentiality. The cover image then undergoes a Discrete Fourier Transform (DFT) and the encrypted watermark is inserted into the frequency coefficients using a new embedding technique. The experimental results demonstrate that the proposed method achieves great watermarked image quality, with a PSNR exceeding 113 dB and an SSIM close to 1, while maintaining a high embedding capacity of 3 BPP (Bits Per Pixel) and offering perfect reversibility. Furthermore, the proposed model demonstrates high sensitivity to attacks, successfully detecting tampering in all 18 tested attacks, and achieves nearly perfect watermark extraction accuracy, with a Bit Error Rate (BER) of 0.0004%. This high watermark extraction accuracy is crucial in our situation where patient data need to be retrieved from the watermarked images with almost no alteration.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.