Arsenic and Chromium Induced Toxicity on Zebrafish Kidney: Mixture Effects on Oxidative Stress and Involvement of Nrf2-Keap1-ARE, DNA Repair, and Intrinsic Apoptotic Pathways.

IF 2.7 4区 医学 Q3 TOXICOLOGY
Sreejata Kamila, Koushik Kumar Dey, Ansuman Chattopadhyay
{"title":"Arsenic and Chromium Induced Toxicity on Zebrafish Kidney: Mixture Effects on Oxidative Stress and Involvement of Nrf2-Keap1-ARE, DNA Repair, and Intrinsic Apoptotic Pathways.","authors":"Sreejata Kamila, Koushik Kumar Dey, Ansuman Chattopadhyay","doi":"10.1002/jat.4709","DOIUrl":null,"url":null,"abstract":"<p><p>In polluted water, cooccurrences of two carcinogens, arsenic (As) and chromium (Cr), are extensively reported. Individual effects of these heavy metals have been reported in kidney of fishes, but underlying molecular mechanisms are not well established. There is no report on combined exposure of As and Cr in kidney. Thus, the present study investigated and compared individual and combined effects of As and Cr on zebrafish (Danio rerio) kidney treating at their environmentally relevant concentrations for 15, 30, and 60 days. Increased ROS levels, lipid peroxidation, GSH level, and decreased catalase activity implied oxidative stress in treated zebrafish kidney. Damage in histoarchitecture in treated groups was also noticed. The current study involved gene expression study of Nrf2, an important transcription factor of cellular stress responses along with its negative regulator Keap1 and downstream antioxidant genes nqo1 and ho1. Results indicated activation of Nrf2-Keap1 pathway after combined exposure. Expression pattern of ogg1, apex1, polb, and creb1 revealed the inhibition of base excision repair pathway in treatments. mRNA expression of tumor suppressor genes p53 and brca2 was also altered. Expressional alteration in bax, bcl2, caspase9, and caspase 3 indicated apoptosis (intrinsic pathway) induction, which was maximum in combined group. Inhibition of DNA repair and induction of apoptosis indicated that the activated antioxidant system was not enough to overcome the damage caused by As and Cr. Overall, this study revealed additive effects of As and Cr in zebrafish kidney after chronic exposure focusing cellular antioxidant and DNA damage responses.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4709","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In polluted water, cooccurrences of two carcinogens, arsenic (As) and chromium (Cr), are extensively reported. Individual effects of these heavy metals have been reported in kidney of fishes, but underlying molecular mechanisms are not well established. There is no report on combined exposure of As and Cr in kidney. Thus, the present study investigated and compared individual and combined effects of As and Cr on zebrafish (Danio rerio) kidney treating at their environmentally relevant concentrations for 15, 30, and 60 days. Increased ROS levels, lipid peroxidation, GSH level, and decreased catalase activity implied oxidative stress in treated zebrafish kidney. Damage in histoarchitecture in treated groups was also noticed. The current study involved gene expression study of Nrf2, an important transcription factor of cellular stress responses along with its negative regulator Keap1 and downstream antioxidant genes nqo1 and ho1. Results indicated activation of Nrf2-Keap1 pathway after combined exposure. Expression pattern of ogg1, apex1, polb, and creb1 revealed the inhibition of base excision repair pathway in treatments. mRNA expression of tumor suppressor genes p53 and brca2 was also altered. Expressional alteration in bax, bcl2, caspase9, and caspase 3 indicated apoptosis (intrinsic pathway) induction, which was maximum in combined group. Inhibition of DNA repair and induction of apoptosis indicated that the activated antioxidant system was not enough to overcome the damage caused by As and Cr. Overall, this study revealed additive effects of As and Cr in zebrafish kidney after chronic exposure focusing cellular antioxidant and DNA damage responses.

砷和铬对斑马鱼肾脏的毒性:对氧化应激的混合效应以及 Nrf2-Keap1-ARE、DNA 修复和内在凋亡途径的参与
在受污染的水体中,砷(As)和铬(Cr)这两种致癌物质共存的现象被广泛报道。这些重金属对鱼类肾脏的单独影响已有报道,但其潜在的分子机制尚未完全确定。目前还没有关于砷和铬在肾脏中联合暴露的报告。因此,本研究调查并比较了砷和铬在环境相关浓度下对斑马鱼(Danio rerio)肾脏造成的 15、30 和 60 天的单独和综合影响。经处理的斑马鱼肾脏中 ROS 水平、脂质过氧化反应、GSH 水平的增加以及过氧化氢酶活性的降低都意味着氧化应激。研究还发现,处理组的组织结构也受到了破坏。目前的研究涉及 Nrf2(细胞应激反应的重要转录因子)及其负调控因子 Keap1 和下游抗氧化基因 nqo1 和 ho1 的基因表达研究。结果表明,在联合暴露后,Nrf2-Keap1 通路被激活。ogg1、apex1、polb 和 creb1 的表达模式表明,碱基切除修复途径在处理过程中受到了抑制。bax、bcl2、caspase9 和 caspase 3 的表达变化表明凋亡(内在途径)诱导,在联合组中变化最大。DNA 修复的抑制和细胞凋亡的诱导表明,激活的抗氧化系统不足以克服砷和铬造成的损伤。总之,本研究揭示了砷和铬在斑马鱼肾脏中的叠加效应,即长期暴露于砷和铬后,细胞的抗氧化和 DNA 损伤反应会集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
6.10%
发文量
145
审稿时长
1 months
期刊介绍: Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信