{"title":"Methodologies underpinning polygenic risk scores estimation: a comprehensive overview.","authors":"Carene Anne Alene Ndong Sima, Kathryn Step, Yolandi Swart, Haiko Schurz, Caitlin Uren, Marlo Möller","doi":"10.1007/s00439-024-02710-0","DOIUrl":null,"url":null,"abstract":"<p><p>Polygenic risk scores (PRS) have emerged as a promising tool for predicting disease risk and treatment outcomes using genomic data. Thousands of genome-wide association studies (GWAS), primarily involving populations of European ancestry, have supported the development of PRS models. However, these models have not been adequately evaluated in non-European populations, raising concerns about their clinical validity and predictive power across diverse groups. Addressing this issue requires developing novel risk prediction frameworks that leverage genetic characteristics across diverse populations, considering host-microbiome interactions and a broad range of health measures. One of the key aspects in evaluating PRS is understanding the strengths and limitations of various methods for constructing them. In this review, we analyze strengths and limitations of different methods for constructing PRS, including traditional weighted approaches and new methods such as Bayesian and Frequentist penalized regression approaches. Finally, we summarize recent advances in PRS calculation methods development, and highlight key areas for future research, including development of models robust across diverse populations by underlining the complex interplay between genetic variants across diverse ancestral backgrounds in disease risk as well as treatment response prediction. PRS hold great promise for improving disease risk prediction and personalized medicine; therefore, their implementation must be guided by careful consideration of their limitations, biases, and ethical implications to ensure that they are used in a fair, equitable, and responsible manner.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"1265-1280"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522080/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02710-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Polygenic risk scores (PRS) have emerged as a promising tool for predicting disease risk and treatment outcomes using genomic data. Thousands of genome-wide association studies (GWAS), primarily involving populations of European ancestry, have supported the development of PRS models. However, these models have not been adequately evaluated in non-European populations, raising concerns about their clinical validity and predictive power across diverse groups. Addressing this issue requires developing novel risk prediction frameworks that leverage genetic characteristics across diverse populations, considering host-microbiome interactions and a broad range of health measures. One of the key aspects in evaluating PRS is understanding the strengths and limitations of various methods for constructing them. In this review, we analyze strengths and limitations of different methods for constructing PRS, including traditional weighted approaches and new methods such as Bayesian and Frequentist penalized regression approaches. Finally, we summarize recent advances in PRS calculation methods development, and highlight key areas for future research, including development of models robust across diverse populations by underlining the complex interplay between genetic variants across diverse ancestral backgrounds in disease risk as well as treatment response prediction. PRS hold great promise for improving disease risk prediction and personalized medicine; therefore, their implementation must be guided by careful consideration of their limitations, biases, and ethical implications to ensure that they are used in a fair, equitable, and responsible manner.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.