{"title":"rU-Net, Multi-Scale Feature Fusion and Transfer Learning: Unlocking the Potential of Cuffless Blood Pressure Monitoring with PPG and ECG.","authors":"Jiaming Chen, Xueling Zhou, Lei Feng, Bingo Wing-Kuen Ling, Lianyi Han, Hongtao Zhang","doi":"10.1109/JBHI.2024.3483301","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an innovative deep-learning model for cuffless blood pressure estimation using PPG and ECG signals, demonstrating state-of-the-art performance on the largest clean dataset, PulseDB. The rU-Net architecture, a fusion of U-Net and ResNet, enhances both generalization and feature extraction accuracy. Accurate multi-scale feature capture is facilitated by short-time Fourier transform (STFT) time-frequency distributions and multi-head attention mechanisms, allowing data-driven feature selection. The inclusion of demographic parameters as supervisory information further elevates performance. On the calibration-based dataset, our model excels, achieving outstanding accuracy (SBP MAE ± std: 4.49 ± 4.86 mmHg, DBP MAE ± std: 2.69 ± 3.10 mmHg), surpassing AAMI standards and earning a BHS Grade A rating. Addressing the challenge of calibration-free data, we propose a fine-tuning-based transfer learning approach. Remarkably, with only 10% data transfer, our model attains exceptional accuracy (SBP MAE ± std: 4.14 ± 5.01 mmHg, DBP MAE ± std: 2.48 ± 2.93 mmHg). This study sets the stage for the development of highly accurate and reliable wearable cuffless blood pressure monitoring devices.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3483301","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces an innovative deep-learning model for cuffless blood pressure estimation using PPG and ECG signals, demonstrating state-of-the-art performance on the largest clean dataset, PulseDB. The rU-Net architecture, a fusion of U-Net and ResNet, enhances both generalization and feature extraction accuracy. Accurate multi-scale feature capture is facilitated by short-time Fourier transform (STFT) time-frequency distributions and multi-head attention mechanisms, allowing data-driven feature selection. The inclusion of demographic parameters as supervisory information further elevates performance. On the calibration-based dataset, our model excels, achieving outstanding accuracy (SBP MAE ± std: 4.49 ± 4.86 mmHg, DBP MAE ± std: 2.69 ± 3.10 mmHg), surpassing AAMI standards and earning a BHS Grade A rating. Addressing the challenge of calibration-free data, we propose a fine-tuning-based transfer learning approach. Remarkably, with only 10% data transfer, our model attains exceptional accuracy (SBP MAE ± std: 4.14 ± 5.01 mmHg, DBP MAE ± std: 2.48 ± 2.93 mmHg). This study sets the stage for the development of highly accurate and reliable wearable cuffless blood pressure monitoring devices.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.