{"title":"Hierarchical graph transformer with contrastive learning for gene regulatory network inference.","authors":"Wentao Cui, Qingqing Long, Wenhao Liu, Chen Fang, Xuezhi Wang, Pengfei Wang, Yuanchun Zhou","doi":"10.1109/JBHI.2024.3476490","DOIUrl":null,"url":null,"abstract":"<p><p>Gene regulatory networks (GRNs) are crucial for understanding gene regulation and cellular processes. Inferring GRNs helps uncover regulatory pathways, shedding light on the regulation and development of cellular processes. With the rise of high-throughput sequencing and advancements in computational technology, computational models have emerged as cost-effective alternatives to traditional experimental studies. Moreover, the surge in ChIPseq data for TF-DNA binding has catalyzed the development of graph neural network (GNN)-based methods, greatly advancing GRN inference capabilities. However, most existing GNN-based methods suffer from the inability to capture long-distance structural semantic correlations due to transitive interactions. In this paper, we introduce a novel GNN-based model named Hierarchical Graph Transformer with Contrastive Learning for GRN (HGTCGRN) inference. HGTCGRN excels at capturing structural semantics using a hierarchical graph Transformer, which introduces a series of gene family nodes representing gene functions as virtual nodes to interact with nodes in the GRNS. These semanticaware virtual-node embeddings are aggregated to produce node representations with varying emphasis. Additionally, we leverage gene ontology information to construct gene interaction networks for contrastive learning optimization of GRNs. Experimental results demonstrate that HGTCGRN achieves superior performance in GRN inference.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3476490","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Gene regulatory networks (GRNs) are crucial for understanding gene regulation and cellular processes. Inferring GRNs helps uncover regulatory pathways, shedding light on the regulation and development of cellular processes. With the rise of high-throughput sequencing and advancements in computational technology, computational models have emerged as cost-effective alternatives to traditional experimental studies. Moreover, the surge in ChIPseq data for TF-DNA binding has catalyzed the development of graph neural network (GNN)-based methods, greatly advancing GRN inference capabilities. However, most existing GNN-based methods suffer from the inability to capture long-distance structural semantic correlations due to transitive interactions. In this paper, we introduce a novel GNN-based model named Hierarchical Graph Transformer with Contrastive Learning for GRN (HGTCGRN) inference. HGTCGRN excels at capturing structural semantics using a hierarchical graph Transformer, which introduces a series of gene family nodes representing gene functions as virtual nodes to interact with nodes in the GRNS. These semanticaware virtual-node embeddings are aggregated to produce node representations with varying emphasis. Additionally, we leverage gene ontology information to construct gene interaction networks for contrastive learning optimization of GRNs. Experimental results demonstrate that HGTCGRN achieves superior performance in GRN inference.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.