FOXM1 derived from triple-negative breast cancer exosomes promotes cancer progression by activating IDO1 transcription in macrophages to suppress ferroptosis and induce M2 polarization of tumor-associated macrophages.

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Genes & genetic systems Pub Date : 2025-04-19 Epub Date: 2024-10-18 DOI:10.1266/ggs.24-00079
Tielin Wang, Yan Zhang, Hong Liu, Jian Wu
{"title":"FOXM1 derived from triple-negative breast cancer exosomes promotes cancer progression by activating IDO1 transcription in macrophages to suppress ferroptosis and induce M2 polarization of tumor-associated macrophages.","authors":"Tielin Wang, Yan Zhang, Hong Liu, Jian Wu","doi":"10.1266/ggs.24-00079","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the oncogenic mechanism of FOXM1 in the tumor microenvironment (TME) regarding triple-negative breast cancer (TNBC) promotion, the mRNA and protein levels of target genes in TNBC cells and their exosomes were detected by RT-qPCR and western blot. A co-culture model of TNBC cells and THP-1/M0 macrophages was established to detect the impact of co-culture on FOXM1 expression and the direction of macrophage polarization. A bioinformatics website was used to predict FOXM1 binding sites in the IDO1 promoter, which were further validated using dual-luciferase reporter and chromatin immunoprecipitation assays. Next, after erastin-induced ferroptosis, we conducted cell viability assays, apoptosis assays and other experiments to investigate whether the FOXM1/IDO1 axis regulates M2 macrophage polarization through ferroptosis. We found that FOXM1 was abundant in exosomes derived from TNBC cells, and that TNBC cells upregulated FOXM1 expression in THP-1 cells through exosomes to promote M2 macrophage polarization. Furthermore, FOXM1 upregulated IDO1 in M2-type tumor-associated macrophages (TAMs) by stimulating its transcription. Finally, FOXM1/IDO1 inhibited ferroptosis, promoting M2 macrophage polarization, thereby advancing TNBC progression. In conclusion, FOXM1 carried by TNBC cell-derived exosomes activated IDO1 transcription in TAMs to inhibit ferroptosis, promoting M2 polarization of TAMs and exerting carcinogenic effects.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.24-00079","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the oncogenic mechanism of FOXM1 in the tumor microenvironment (TME) regarding triple-negative breast cancer (TNBC) promotion, the mRNA and protein levels of target genes in TNBC cells and their exosomes were detected by RT-qPCR and western blot. A co-culture model of TNBC cells and THP-1/M0 macrophages was established to detect the impact of co-culture on FOXM1 expression and the direction of macrophage polarization. A bioinformatics website was used to predict FOXM1 binding sites in the IDO1 promoter, which were further validated using dual-luciferase reporter and chromatin immunoprecipitation assays. Next, after erastin-induced ferroptosis, we conducted cell viability assays, apoptosis assays and other experiments to investigate whether the FOXM1/IDO1 axis regulates M2 macrophage polarization through ferroptosis. We found that FOXM1 was abundant in exosomes derived from TNBC cells, and that TNBC cells upregulated FOXM1 expression in THP-1 cells through exosomes to promote M2 macrophage polarization. Furthermore, FOXM1 upregulated IDO1 in M2-type tumor-associated macrophages (TAMs) by stimulating its transcription. Finally, FOXM1/IDO1 inhibited ferroptosis, promoting M2 macrophage polarization, thereby advancing TNBC progression. In conclusion, FOXM1 carried by TNBC cell-derived exosomes activated IDO1 transcription in TAMs to inhibit ferroptosis, promoting M2 polarization of TAMs and exerting carcinogenic effects.

三阴性乳腺癌外泌体中的 FOXM1 通过激活巨噬细胞中的 IDO1 转录来抑制铁变态反应并诱导肿瘤相关巨噬细胞的 M2 极化,从而促进癌症进展。
探讨FOXM1在肿瘤微环境(TME)中促进三阴性乳腺癌(TNBC)的致癌机制。采用 RT-qPCR 和 Western 印迹法检测 TNBC 细胞及其外泌体中靶基因的 mRNA 和蛋白水平。建立了TNBC细胞和THP-1/M0巨噬细胞的共培养模型,以检测共培养对FOXM1表达和巨噬细胞极化方向的影响。利用生物信息学网站预测了FOXM1与IDO1启动子之间的结合位点,并通过双荧光素酶报告实验和染色质免疫沉淀(ChIP)实验进一步验证了这些结合位点。最后,在厄拉斯汀诱导的铁变态反应后,进行了细胞计数试剂盒-8(CCK-8)、末端脱氧核苷酸转移酶介导的dUTP缺口标记(TUNEL)等实验,研究FOXM1/IDO1轴是否通过铁变态反应调控M2巨噬细胞的极化。研究发现,FOXM1在TNBC细胞的外泌体中高表达,TNBC细胞通过外泌体上调FOXM1在THP-1细胞中的表达,促进M2巨噬细胞极化。此外,FOXM1还通过调节转录上调M2型TAMs中的IDO1。最后,FOXM1/IDO1抑制了铁凋亡,促进了M2巨噬细胞的极化,从而推动了TNBC的进展。总之,来自TNBC细胞外泌体的FOXM1激活了TAMs中IDO1的转录,抑制了铁凋亡,促进了TAMs的M2极化,发挥了致癌作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & genetic systems
Genes & genetic systems 生物-生化与分子生物学
CiteScore
1.50
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Genes & Genetic Systems , formerly the Japanese Journal of Genetics , is published bimonthly by the Genetics Society of Japan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信