Rui Zong, Can Guo, Jun-Bo He, Ting-Kui Wu, Hao Liu
{"title":"Using Machine Learning Algorithms to Predict Postoperative Anterior Bone Loss Following Anterior Cervical Disc Replacement.","authors":"Rui Zong, Can Guo, Jun-Bo He, Ting-Kui Wu, Hao Liu","doi":"10.1177/21925682241293712","DOIUrl":null,"url":null,"abstract":"<p><p>Study DesignMachine learning model.ObjectivesThis study aimed to develop and validate a machine learning (ML) model to predict moderate-severe anterior bone loss (ABL) following anterior cervical disc replacement (ACDR).MethodsA retrospective review of patients undergoing ACDR or Hybrid surgery (HS) at a single center was performed. Patients diagnosed as C3-7 single- or multi-level cervical disc degenerative diseases (CDDD) with more than 2 years of follow-up and complete pre- and postoperative radiological imaging were included. An ML-based algorithm was developed to predict moderate-severe ABL based on perioperative demographic, clinical, and radiographic parameters. Model performance was evaluated in terms of discrimination and overall performance.ResultsA total of 339 ACDR segments were included (61.65% female, mean age 45.65 ± 8.03 years). During a follow-up period of 45.65 ± 8.03 months, 103 (30.38%) segments developed moderate-severe ABL. The model demonstrated good discrimination and overall performance according to precision (moderate-severe ABL: 0.71 ± 0.07, none-mild ABL: 0.73 ± 0.08), recall (moderate-severe ABL: 0.69 ± 0.08, none-mild ABL: 0.75 ± 0.07), F1-score (moderate-severe ABL: 0.70 ± 0.08, none-mild ABL: 0.74 ± 0.07), and area under the curve (AUC) (0.74 ± 0.10). The most important predictive features were higher height change, higher post-segmental angle, and longer operation time.ConclusionsUtilizing a ML approach, this study successfully identified risk factors and accurately predicted the development of moderate-severe ABL following ACDR, demonstrating robust discrimination and overall performance. By overcoming the limitations of traditional statistical methods, ML can enhance discovery, clinical decision-making, and intraoperative techniques.</p>","PeriodicalId":12680,"journal":{"name":"Global Spine Journal","volume":" ","pages":"2236-2245"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559807/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/21925682241293712","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Study DesignMachine learning model.ObjectivesThis study aimed to develop and validate a machine learning (ML) model to predict moderate-severe anterior bone loss (ABL) following anterior cervical disc replacement (ACDR).MethodsA retrospective review of patients undergoing ACDR or Hybrid surgery (HS) at a single center was performed. Patients diagnosed as C3-7 single- or multi-level cervical disc degenerative diseases (CDDD) with more than 2 years of follow-up and complete pre- and postoperative radiological imaging were included. An ML-based algorithm was developed to predict moderate-severe ABL based on perioperative demographic, clinical, and radiographic parameters. Model performance was evaluated in terms of discrimination and overall performance.ResultsA total of 339 ACDR segments were included (61.65% female, mean age 45.65 ± 8.03 years). During a follow-up period of 45.65 ± 8.03 months, 103 (30.38%) segments developed moderate-severe ABL. The model demonstrated good discrimination and overall performance according to precision (moderate-severe ABL: 0.71 ± 0.07, none-mild ABL: 0.73 ± 0.08), recall (moderate-severe ABL: 0.69 ± 0.08, none-mild ABL: 0.75 ± 0.07), F1-score (moderate-severe ABL: 0.70 ± 0.08, none-mild ABL: 0.74 ± 0.07), and area under the curve (AUC) (0.74 ± 0.10). The most important predictive features were higher height change, higher post-segmental angle, and longer operation time.ConclusionsUtilizing a ML approach, this study successfully identified risk factors and accurately predicted the development of moderate-severe ABL following ACDR, demonstrating robust discrimination and overall performance. By overcoming the limitations of traditional statistical methods, ML can enhance discovery, clinical decision-making, and intraoperative techniques.
期刊介绍:
Global Spine Journal (GSJ) is the official scientific publication of AOSpine. A peer-reviewed, open access journal, devoted to the study and treatment of spinal disorders, including diagnosis, operative and non-operative treatment options, surgical techniques, and emerging research and clinical developments.GSJ is indexed in PubMedCentral, SCOPUS, and Emerging Sources Citation Index (ESCI).