Elizabeth W Diemer, Johanna Tuhkanen, Sara Sammallahti, Kati Heinonen, Alexander Neumann, Sonia L Robinson, Matthew Suderman, Jianping Jin, Christian M Page, Ruby Fore, Sheryl L Rifas-Shiman, Emily Oken, Patrice Perron, Luigi Bouchard, Marie France Hivert, Katri Räikköne, Jari Lahti, Edwina H Yeung, Weihua Guan, Sunni L Mumford, Maria C Magnus, Siri Håberg, Wenche Nystad, Christine L Parr, Stephanie J London, Janine F Felix, Henning Tiemeier
{"title":"Epigenome-wide meta-analysis of prenatal vitamin D insufficiency and cord blood DNA methylation.","authors":"Elizabeth W Diemer, Johanna Tuhkanen, Sara Sammallahti, Kati Heinonen, Alexander Neumann, Sonia L Robinson, Matthew Suderman, Jianping Jin, Christian M Page, Ruby Fore, Sheryl L Rifas-Shiman, Emily Oken, Patrice Perron, Luigi Bouchard, Marie France Hivert, Katri Räikköne, Jari Lahti, Edwina H Yeung, Weihua Guan, Sunni L Mumford, Maria C Magnus, Siri Håberg, Wenche Nystad, Christine L Parr, Stephanie J London, Janine F Felix, Henning Tiemeier","doi":"10.1080/15592294.2024.2413815","DOIUrl":null,"url":null,"abstract":"<p><p>Low maternal vitamin D concentrations during pregnancy have been associated with a range of offspring health outcomes. DNA methylation is one mechanism by which the maternal vitamin D status during pregnancy could impact offspring's health in later life. We aimed to evaluate whether maternal vitamin D insufficiency during pregnancy was conditionally associated with DNA methylation in the offspring cord blood. Maternal vitamin D insufficiency (plasma 25-hydroxy vitamin D <math><mo>≤</mo></math> 75 nmol/L) during pregnancy and offspring cord blood DNA methylation, assessed using Illumina Infinium 450k or Illumina EPIC Beadchip, was collected for 3738 mother-child pairs in 7 cohorts as part of the Pregnancy and Childhood Epigenetics (PACE) consortium. Associations between maternal vitamin D and offspring DNA methylation, adjusted for fetal sex, maternal smoking, maternal age, maternal pre-pregnancy or early pregnancy BMI, maternal education, gestational age at measurement of 25(OH)D, parity, and cell type composition, were estimated using robust linear regression in each cohort, and a fixed-effects meta-analysis was conducted. The prevalence of vitamin D insufficiency ranged from 44.3% to 78.5% across cohorts. Across 364,678 CpG sites, none were associated with maternal vitamin D insufficiency at an epigenome-wide significant level after correcting for multiple testing using Bonferroni correction or a less conservative Benjamini-Hochberg False Discovery Rate approach (FDR, <i>p</i> > 0.05). In this epigenome-wide association study, we did not find convincing evidence of a conditional association of vitamin D insufficiency with offspring DNA methylation at any measured CpG site.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2413815"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2024.2413815","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Low maternal vitamin D concentrations during pregnancy have been associated with a range of offspring health outcomes. DNA methylation is one mechanism by which the maternal vitamin D status during pregnancy could impact offspring's health in later life. We aimed to evaluate whether maternal vitamin D insufficiency during pregnancy was conditionally associated with DNA methylation in the offspring cord blood. Maternal vitamin D insufficiency (plasma 25-hydroxy vitamin D 75 nmol/L) during pregnancy and offspring cord blood DNA methylation, assessed using Illumina Infinium 450k or Illumina EPIC Beadchip, was collected for 3738 mother-child pairs in 7 cohorts as part of the Pregnancy and Childhood Epigenetics (PACE) consortium. Associations between maternal vitamin D and offspring DNA methylation, adjusted for fetal sex, maternal smoking, maternal age, maternal pre-pregnancy or early pregnancy BMI, maternal education, gestational age at measurement of 25(OH)D, parity, and cell type composition, were estimated using robust linear regression in each cohort, and a fixed-effects meta-analysis was conducted. The prevalence of vitamin D insufficiency ranged from 44.3% to 78.5% across cohorts. Across 364,678 CpG sites, none were associated with maternal vitamin D insufficiency at an epigenome-wide significant level after correcting for multiple testing using Bonferroni correction or a less conservative Benjamini-Hochberg False Discovery Rate approach (FDR, p > 0.05). In this epigenome-wide association study, we did not find convincing evidence of a conditional association of vitamin D insufficiency with offspring DNA methylation at any measured CpG site.
孕期母体维生素 D 浓度低与一系列后代健康结果有关。DNA 甲基化是孕期母体维生素 D 状态影响后代健康的一种机制。我们的目的是评估孕期母体维生素 D 不足是否与后代脐带血中的 DNA 甲基化有条件性关联。作为妊娠与儿童表观遗传学(PACE)联盟的一部分,我们收集了7个队列中3738对母子的妊娠期母体维生素D不足(血浆25-羟基维生素D≤75 nmol/L)与子代脐带血DNA甲基化的关系,并使用Illumina Infinium 450k或Illumina EPIC Beadchip进行了评估。在每个队列中使用稳健线性回归估算了母体维生素 D 与后代 DNA 甲基化之间的关系,并对胎儿性别、母体吸烟、母体年龄、母体孕前或孕早期体重指数、母体受教育程度、测量 25(OH)D 时的胎龄、奇偶性和细胞类型组成进行了调整,还进行了固定效应荟萃分析。各队列中维生素 D 不足的发生率从 44.3% 到 78.5% 不等。在 364,678 个 CpG 位点中,在使用 Bonferroni 校正或不太保守的 Benjamini-Hochberg 错误发现率方法(FDR,p > 0.05)进行多重检验校正后,没有一个位点与孕产妇维生素 D 不足有全表观基因组显著相关性。在这项全表观基因组关联研究中,我们没有发现令人信服的证据表明维生素 D 不足与后代 DNA 甲基化在任何测量的 CpG 位点上存在条件性关联。
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics