Jialu Li, Qiting Zuo, Feng Feng, Hongtao Jia, Yingxin Ji
{"title":"Pollution characteristics, bioavailability, and risk assessment of heavy metals in urban road dust from Zhengzhou, China.","authors":"Jialu Li, Qiting Zuo, Feng Feng, Hongtao Jia, Yingxin Ji","doi":"10.1007/s10653-024-02266-y","DOIUrl":null,"url":null,"abstract":"<p><p>To analyze contamination levels, spatial distribution characteristics, bioavailability, and risks of heavy metals (Cr, Ni, Cu, Zn, As, Cd, Hg, and Pb), 65 road dust samples were collected and tested by ICP-MS from Zhengzhou in October 2023. The mean concentrations of most heavy metals, except Ni, exceeded their corresponding background values, with the mean concentration of Cd being 7.43 times that of its background. Spatially, for most heavy metals, higher concentrations were concentrated within the central area, and notable pollution hotspots emerged in proximity to construction area. Cr, Ni, Cu, As, and Pb were mostly bound to residual fraction with lower bioavailability, while Cd and Zn were mainly in exchangeable fraction with higher bioavailability. The enrichment factor, geo-accumulation, contamination factor, and pollution load index indicated that Cd and Hg were highly contaminated, particularly Cd, yet the study area remained moderately polluted. The average RI value of 384.66 indicated a considerate ecological risk, and Cd caused the highest potential ecological risk. Both of the non-carcinogenic and carcinogenic risks were insignificant, however, the human health risk of Cr, As, and Pb demand attention. The research results can provide theoretical basis and data support for the pollution prevention and control of urban environment of Zhengzhou.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"476"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02266-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
To analyze contamination levels, spatial distribution characteristics, bioavailability, and risks of heavy metals (Cr, Ni, Cu, Zn, As, Cd, Hg, and Pb), 65 road dust samples were collected and tested by ICP-MS from Zhengzhou in October 2023. The mean concentrations of most heavy metals, except Ni, exceeded their corresponding background values, with the mean concentration of Cd being 7.43 times that of its background. Spatially, for most heavy metals, higher concentrations were concentrated within the central area, and notable pollution hotspots emerged in proximity to construction area. Cr, Ni, Cu, As, and Pb were mostly bound to residual fraction with lower bioavailability, while Cd and Zn were mainly in exchangeable fraction with higher bioavailability. The enrichment factor, geo-accumulation, contamination factor, and pollution load index indicated that Cd and Hg were highly contaminated, particularly Cd, yet the study area remained moderately polluted. The average RI value of 384.66 indicated a considerate ecological risk, and Cd caused the highest potential ecological risk. Both of the non-carcinogenic and carcinogenic risks were insignificant, however, the human health risk of Cr, As, and Pb demand attention. The research results can provide theoretical basis and data support for the pollution prevention and control of urban environment of Zhengzhou.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.