{"title":"Clustering scRNA-seq data with the cross-view collaborative information fusion strategy.","authors":"Zhengzheng Lou, Xiaojiao Wei, Yuanhao Hu, Shizhe Hu, Yucong Wu, Zhen Tian","doi":"10.1093/bib/bbae511","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) technology has revolutionized biological research by enabling high-throughput, cellular-resolution gene expression profiling. A critical step in scRNA-seq data analysis is cell clustering, which supports downstream analyses. However, the high-dimensional and sparse nature of scRNA-seq data poses significant challenges to existing clustering methods. Furthermore, integrating gene expression information with potential cell structure data remains largely unexplored. Here, we present scCFIB, a novel information bottleneck (IB)-based clustering algorithm that leverages the power of IB for efficient processing of high-dimensional sparse data and incorporates a cross-view fusion strategy to achieve robust cell clustering. scCFIB constructs a multi-feature space by establishing two distinct views from the original features. We then formulate the cell clustering problem as a target loss function within the IB framework, employing a collaborative information fusion strategy. To further optimize scCFIB's performance, we introduce a novel sequential optimization approach through an iterative process. Benchmarking against established methods on diverse scRNA-seq datasets demonstrates that scCFIB achieves superior performance in scRNA-seq data clustering tasks. Availability: the source code is publicly available on GitHub: https://github.com/weixiaojiao/scCFIB.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae511","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell RNA sequencing (scRNA-seq) technology has revolutionized biological research by enabling high-throughput, cellular-resolution gene expression profiling. A critical step in scRNA-seq data analysis is cell clustering, which supports downstream analyses. However, the high-dimensional and sparse nature of scRNA-seq data poses significant challenges to existing clustering methods. Furthermore, integrating gene expression information with potential cell structure data remains largely unexplored. Here, we present scCFIB, a novel information bottleneck (IB)-based clustering algorithm that leverages the power of IB for efficient processing of high-dimensional sparse data and incorporates a cross-view fusion strategy to achieve robust cell clustering. scCFIB constructs a multi-feature space by establishing two distinct views from the original features. We then formulate the cell clustering problem as a target loss function within the IB framework, employing a collaborative information fusion strategy. To further optimize scCFIB's performance, we introduce a novel sequential optimization approach through an iterative process. Benchmarking against established methods on diverse scRNA-seq datasets demonstrates that scCFIB achieves superior performance in scRNA-seq data clustering tasks. Availability: the source code is publicly available on GitHub: https://github.com/weixiaojiao/scCFIB.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.