{"title":"BANDRP: a bilinear attention network for anti-cancer drug response prediction based on fingerprint and multi-omics.","authors":"Cheng Cao, Haochen Zhao, Jianxin Wang","doi":"10.1093/bib/bbae493","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting anti-cancer drug response can help with personalized cancer treatment and is an important topic in modern oncology research. Although some methods have been used for anti-cancer drug response prediction, how to effectively integrate various features related to cancer cell lines, drugs, and their known responses is still affected by the redundant information of input features and the complex interactions between features. In this study, we propose a bilinear attention model, named BANDRP, based on multiple omics data of cancer cell lines and multiple molecular fingerprints of drugs to predict potential anti-cancer drug responses. Compared with existing models, BANDRP uses gene expression data to calculate pathway enrichment scores to enrich the features of cancer cell lines and can automatically learn the interactive information of cancer cell lines and drugs through bilinear attention networks. Benchmarking and independent tests demonstrate that BANDRP surpasses baseline models and exhibits robust generalization performance. Ablation experiments affirm the optimality of the current model architecture and feature selection scheme for our prediction task. Furthermore, analytical experiments and case studies on unknown anti-cancer drug response predictions underscore BANDRP's potential as a potent and reliable framework for predicting anti-cancer drug response.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae493","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting anti-cancer drug response can help with personalized cancer treatment and is an important topic in modern oncology research. Although some methods have been used for anti-cancer drug response prediction, how to effectively integrate various features related to cancer cell lines, drugs, and their known responses is still affected by the redundant information of input features and the complex interactions between features. In this study, we propose a bilinear attention model, named BANDRP, based on multiple omics data of cancer cell lines and multiple molecular fingerprints of drugs to predict potential anti-cancer drug responses. Compared with existing models, BANDRP uses gene expression data to calculate pathway enrichment scores to enrich the features of cancer cell lines and can automatically learn the interactive information of cancer cell lines and drugs through bilinear attention networks. Benchmarking and independent tests demonstrate that BANDRP surpasses baseline models and exhibits robust generalization performance. Ablation experiments affirm the optimality of the current model architecture and feature selection scheme for our prediction task. Furthermore, analytical experiments and case studies on unknown anti-cancer drug response predictions underscore BANDRP's potential as a potent and reliable framework for predicting anti-cancer drug response.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.