A multi-omics study of brain tissue transcription and DNA methylation revealing the genetic pathogenesis of ADHD.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Jingkai Wang, Qiu-Wen Zhu, Jia-Hao Mai, Shun Zhang, Yuqing Wang, Jiatong Liang, Ji-Yuan Zhou
{"title":"A multi-omics study of brain tissue transcription and DNA methylation revealing the genetic pathogenesis of ADHD.","authors":"Jingkai Wang, Qiu-Wen Zhu, Jia-Hao Mai, Shun Zhang, Yuqing Wang, Jiatong Liang, Ji-Yuan Zhou","doi":"10.1093/bib/bbae502","DOIUrl":null,"url":null,"abstract":"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is a chronic psychiatric disease that often affects a patient's whole life. Research has found that genetics plays an important role in the development of ADHD. However, there is still a lack of knowledge about the tissue-specific causal effects of biological processes beyond gene expression, such as alternative splicing (AS) and DNA methylation (DNAm), on ADHD. In this paper, a multi-omics study was conducted to investigate the causal effects of the transcription and the DNAm on ADHD, by integrating ADHD genome-wide association data with quantitative trait loci data of gene expression, AS, and DNAm across 14 different brain tissues. The causal effects were estimated using four different two-sample Mendelian randomization methods. Finally, we also prioritized the expression of 866 genes showing significant causal effects, including COMMD5, ENSG00000271904, HYAL3, etc., within at least one brain tissue. We prioritized 966 unique genes that have statistically significant causal AS events, within at least one of the 14 different brain tissues. These genes include PPP1R16A, GGT7, TREM2, etc. Furthermore, through mediation analysis, 106 regulatory pathways were inferred where DNAm influences ADHD through gene expression or AS processes. Our research findings provide guidance for future experimental studies on the molecular mechanisms of ADHD development, and also put forward valuable knowledge for the prevention, diagnosis, and treatment of ADHD.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a chronic psychiatric disease that often affects a patient's whole life. Research has found that genetics plays an important role in the development of ADHD. However, there is still a lack of knowledge about the tissue-specific causal effects of biological processes beyond gene expression, such as alternative splicing (AS) and DNA methylation (DNAm), on ADHD. In this paper, a multi-omics study was conducted to investigate the causal effects of the transcription and the DNAm on ADHD, by integrating ADHD genome-wide association data with quantitative trait loci data of gene expression, AS, and DNAm across 14 different brain tissues. The causal effects were estimated using four different two-sample Mendelian randomization methods. Finally, we also prioritized the expression of 866 genes showing significant causal effects, including COMMD5, ENSG00000271904, HYAL3, etc., within at least one brain tissue. We prioritized 966 unique genes that have statistically significant causal AS events, within at least one of the 14 different brain tissues. These genes include PPP1R16A, GGT7, TREM2, etc. Furthermore, through mediation analysis, 106 regulatory pathways were inferred where DNAm influences ADHD through gene expression or AS processes. Our research findings provide guidance for future experimental studies on the molecular mechanisms of ADHD development, and also put forward valuable knowledge for the prevention, diagnosis, and treatment of ADHD.

揭示多动症遗传发病机制的脑组织转录和 DNA 甲基化多组学研究。
注意力缺陷/多动症(ADHD)是一种慢性精神疾病,通常会影响患者的一生。研究发现,遗传在多动症的发病过程中起着重要作用。然而,对于基因表达以外的生物过程(如替代剪接(AS)和DNA甲基化(DNAm))对ADHD的组织特异性因果效应仍缺乏了解。本文开展了一项多组学研究,通过整合14种不同脑组织的ADHD全基因组关联数据与基因表达、AS和DNAm的定量性状位点数据,研究转录和DNAm对ADHD的因果效应。使用四种不同的双样本孟德尔随机化方法估算了因果效应。最后,我们还对至少一个脑组织中显示出显著因果效应的 866 个基因的表达进行了优先排序,包括 COMMD5、ENSG00000271904、HYAL3 等。我们对 14 种不同脑组织中至少一种组织内具有统计学意义的因果关系 AS 事件的 966 个独特基因进行了优先排序。这些基因包括 PPP1R16A、GGT7、TREM2 等。此外,通过中介分析,我们还推断出 106 条 DNAm 通过基因表达或 AS 过程影响多动症的调控途径。我们的研究成果为今后开展多动症发病分子机制的实验研究提供了指导,也为多动症的预防、诊断和治疗提供了有价值的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信