Muhammad Asad Ullah, Muhammad Awais Ahmed, Latifa AlHusnain, Muhammad Abu Bakar Zia, Muneera D F AlKahtani, Kotb A Attia, Mohammed Hawash
{"title":"Comprehensive identification of GASA genes in sunflower and expression profiling in response to drought.","authors":"Muhammad Asad Ullah, Muhammad Awais Ahmed, Latifa AlHusnain, Muhammad Abu Bakar Zia, Muneera D F AlKahtani, Kotb A Attia, Mohammed Hawash","doi":"10.1186/s12864-024-10860-8","DOIUrl":null,"url":null,"abstract":"<p><p>Drought stress poses a critical threat to global crop yields and sustainable agriculture. The GASA genes are recognized for their pivotal role in stress tolerance and plant growth, but little is known about how they function in sunflowers. The investigation aimed to identify and elucidate the role of HaGASA genes in conferring sunflowers with drought tolerance. Twenty-seven different HaGASA gene family members were found in this study that were inconsistently located across eleven sunflower chromosomes. Phylogeny analysis revealed that the sunflower HaGASA genes were divided into five subgroups by comparing GASA genes with those from Arabidopsis, peanut, and soybean, with members within each subgroup displaying similar conserved motifs and gene structures. In-silico evaluation of cis-regulatory elements indicated the existence of specific elements associated with stress-responsiveness being the most abundant, followed by hormone, light, and growth-responsive elements. Transcriptomic data from the NCBI database was utilized to assess the HaGASA genes expression profile in different sunflower varieties under drought conditions. The HaGASA genes expression across ten sunflower genotypes under drought stress, revealed 14 differentially expressed HaGASA genes, implying their active role in the plant's stress response. The expression in different organs revealed that HaGASA2, HaGASA11, HaGASA17, HaGASA19, HaGASA21 and HaGASA26 displayed maximum expression in the stem. Our findings implicate HaGASA genes in mediating sunflower growth maintenance and adaptation to abiotic stress, particularly drought. The findings, taken together, provided a basic understanding of the structure and potential functions of HaGASA genes, setting the framework for further functional investigations into their roles in drought stress mitigation and crop improvement strategies.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472593/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10860-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought stress poses a critical threat to global crop yields and sustainable agriculture. The GASA genes are recognized for their pivotal role in stress tolerance and plant growth, but little is known about how they function in sunflowers. The investigation aimed to identify and elucidate the role of HaGASA genes in conferring sunflowers with drought tolerance. Twenty-seven different HaGASA gene family members were found in this study that were inconsistently located across eleven sunflower chromosomes. Phylogeny analysis revealed that the sunflower HaGASA genes were divided into five subgroups by comparing GASA genes with those from Arabidopsis, peanut, and soybean, with members within each subgroup displaying similar conserved motifs and gene structures. In-silico evaluation of cis-regulatory elements indicated the existence of specific elements associated with stress-responsiveness being the most abundant, followed by hormone, light, and growth-responsive elements. Transcriptomic data from the NCBI database was utilized to assess the HaGASA genes expression profile in different sunflower varieties under drought conditions. The HaGASA genes expression across ten sunflower genotypes under drought stress, revealed 14 differentially expressed HaGASA genes, implying their active role in the plant's stress response. The expression in different organs revealed that HaGASA2, HaGASA11, HaGASA17, HaGASA19, HaGASA21 and HaGASA26 displayed maximum expression in the stem. Our findings implicate HaGASA genes in mediating sunflower growth maintenance and adaptation to abiotic stress, particularly drought. The findings, taken together, provided a basic understanding of the structure and potential functions of HaGASA genes, setting the framework for further functional investigations into their roles in drought stress mitigation and crop improvement strategies.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.