{"title":"DNASimCLR: a contrastive learning-based deep learning approach for gene sequence data classification.","authors":"Minghao Yang, Zehua Wang, Zizhuo Yan, Wenxiang Wang, Qian Zhu, Changlong Jin","doi":"10.1186/s12859-024-05955-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The rapid advancements in deep neural network models have significantly enhanced the ability to extract features from microbial sequence data, which is critical for addressing biological challenges. However, the scarcity and complexity of labeled microbial data pose substantial difficulties for supervised learning approaches. To address these issues, we propose DNASimCLR, an unsupervised framework designed for efficient gene sequence data feature extraction.</p><p><strong>Results: </strong>DNASimCLR leverages convolutional neural networks and the SimCLR framework, based on contrastive learning, to extract intricate features from diverse microbial gene sequences. Pre-training was conducted on two classic large scale unlabelled datasets encompassing metagenomes and viral gene sequences. Subsequent classification tasks were performed by fine-tuning the pretrained model using the previously acquired model. Our experiments demonstrate that DNASimCLR is at least comparable to state-of-the-art techniques for gene sequence classification. For convolutional neural network-based approaches, DNASimCLR surpasses the latest existing methods, clearly establishing its superiority over the state-of-the-art CNN-based feature extraction techniques. Furthermore, the model exhibits superior performance across diverse tasks in analyzing biological sequence data, showcasing its robust adaptability.</p><p><strong>Conclusions: </strong>DNASimCLR represents a robust and database-agnostic solution for gene sequence classification. Its versatility allows it to perform well in scenarios involving novel or previously unseen gene sequences, making it a valuable tool for diverse applications in genomics.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"328"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05955-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The rapid advancements in deep neural network models have significantly enhanced the ability to extract features from microbial sequence data, which is critical for addressing biological challenges. However, the scarcity and complexity of labeled microbial data pose substantial difficulties for supervised learning approaches. To address these issues, we propose DNASimCLR, an unsupervised framework designed for efficient gene sequence data feature extraction.
Results: DNASimCLR leverages convolutional neural networks and the SimCLR framework, based on contrastive learning, to extract intricate features from diverse microbial gene sequences. Pre-training was conducted on two classic large scale unlabelled datasets encompassing metagenomes and viral gene sequences. Subsequent classification tasks were performed by fine-tuning the pretrained model using the previously acquired model. Our experiments demonstrate that DNASimCLR is at least comparable to state-of-the-art techniques for gene sequence classification. For convolutional neural network-based approaches, DNASimCLR surpasses the latest existing methods, clearly establishing its superiority over the state-of-the-art CNN-based feature extraction techniques. Furthermore, the model exhibits superior performance across diverse tasks in analyzing biological sequence data, showcasing its robust adaptability.
Conclusions: DNASimCLR represents a robust and database-agnostic solution for gene sequence classification. Its versatility allows it to perform well in scenarios involving novel or previously unseen gene sequences, making it a valuable tool for diverse applications in genomics.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.