Yaxun Jia, Haoyang Wang, Zhu Yuan, Lian Zhu, Zuo-Lin Xiang
{"title":"Biomedical relation extraction method based on ensemble learning and attention mechanism.","authors":"Yaxun Jia, Haoyang Wang, Zhu Yuan, Lian Zhu, Zuo-Lin Xiang","doi":"10.1186/s12859-024-05951-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Relation extraction (RE) plays a crucial role in biomedical research as it is essential for uncovering complex semantic relationships between entities in textual data. Given the significance of RE in biomedical informatics and the increasing volume of literature, there is an urgent need for advanced computational models capable of accurately and efficiently extracting these relationships on a large scale.</p><p><strong>Results: </strong>This paper proposes a novel approach, SARE, combining ensemble learning Stacking and attention mechanisms to enhance the performance of biomedical relation extraction. By leveraging multiple pre-trained models, SARE demonstrates improved adaptability and robustness across diverse domains. The attention mechanisms enable the model to capture and utilize key information in the text more accurately. SARE achieved performance improvements of 4.8, 8.7, and 0.8 percentage points on the PPI, DDI, and ChemProt datasets, respectively, compared to the original BERT variant and the domain-specific PubMedBERT model.</p><p><strong>Conclusions: </strong>SARE offers a promising solution for improving the accuracy and efficiency of relation extraction tasks in biomedical research, facilitating advancements in biomedical informatics. The results suggest that combining ensemble learning with attention mechanisms is effective for extracting complex relationships from biomedical texts. Our code and data are publicly available at: https://github.com/GS233/Biomedical .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"333"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05951-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Relation extraction (RE) plays a crucial role in biomedical research as it is essential for uncovering complex semantic relationships between entities in textual data. Given the significance of RE in biomedical informatics and the increasing volume of literature, there is an urgent need for advanced computational models capable of accurately and efficiently extracting these relationships on a large scale.
Results: This paper proposes a novel approach, SARE, combining ensemble learning Stacking and attention mechanisms to enhance the performance of biomedical relation extraction. By leveraging multiple pre-trained models, SARE demonstrates improved adaptability and robustness across diverse domains. The attention mechanisms enable the model to capture and utilize key information in the text more accurately. SARE achieved performance improvements of 4.8, 8.7, and 0.8 percentage points on the PPI, DDI, and ChemProt datasets, respectively, compared to the original BERT variant and the domain-specific PubMedBERT model.
Conclusions: SARE offers a promising solution for improving the accuracy and efficiency of relation extraction tasks in biomedical research, facilitating advancements in biomedical informatics. The results suggest that combining ensemble learning with attention mechanisms is effective for extracting complex relationships from biomedical texts. Our code and data are publicly available at: https://github.com/GS233/Biomedical .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.