Zinc and copper effect mechanical cell adhesion properties of the amyloid precursor protein.

IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alexander August, Sabrina Hartmann, Sandra Schilling, Christine Müller-Renno, Tarik Begic, Antonio J Pierik, Christiane Ziegler, Stefan Kins
{"title":"Zinc and copper effect mechanical cell adhesion properties of the amyloid precursor protein.","authors":"Alexander August, Sabrina Hartmann, Sandra Schilling, Christine Müller-Renno, Tarik Begic, Antonio J Pierik, Christiane Ziegler, Stefan Kins","doi":"10.1515/hsz-2024-0054","DOIUrl":null,"url":null,"abstract":"<p><p>The amyloid precursor protein (APP) can be modulated by the binding of copper and zinc ions. Both ions bind with low nanomolar affinities to both subdomains (E1 and E2) in the extracellular domain of APP. However, the impact of ion binding on structural and mechanical trans-dimerization properties is yet unclear. Using a bead aggregation assay (BAA), we found that zinc ions increase the dimerization of both subdomains, while copper promotes only dimerization of the E1 domain. In line with this, scanning force spectroscopy (SFS) analysis revealed an increase in APP adhesion force up to three-fold for copper and zinc. Interestingly, however, copper did not alter the separation length of APP dimers, whereas high zinc concentrations caused alterations in the structural features and a decrease of separation length. Together, our data provide clear differences in copper and zinc mediated APP trans-dimerization and indicate that zinc binding might favor a less flexible APP structure. This fact is of significant interest since changes in zinc and copper ion homeostasis are observed in Alzheimer's disease (AD) and were reported to affect synaptic plasticity. Thus, modulation of APP trans-dimerization by copper and zinc could contribute to early synaptic instability in AD.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2024-0054","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The amyloid precursor protein (APP) can be modulated by the binding of copper and zinc ions. Both ions bind with low nanomolar affinities to both subdomains (E1 and E2) in the extracellular domain of APP. However, the impact of ion binding on structural and mechanical trans-dimerization properties is yet unclear. Using a bead aggregation assay (BAA), we found that zinc ions increase the dimerization of both subdomains, while copper promotes only dimerization of the E1 domain. In line with this, scanning force spectroscopy (SFS) analysis revealed an increase in APP adhesion force up to three-fold for copper and zinc. Interestingly, however, copper did not alter the separation length of APP dimers, whereas high zinc concentrations caused alterations in the structural features and a decrease of separation length. Together, our data provide clear differences in copper and zinc mediated APP trans-dimerization and indicate that zinc binding might favor a less flexible APP structure. This fact is of significant interest since changes in zinc and copper ion homeostasis are observed in Alzheimer's disease (AD) and were reported to affect synaptic plasticity. Thus, modulation of APP trans-dimerization by copper and zinc could contribute to early synaptic instability in AD.

锌和铜对淀粉样前体蛋白机械细胞粘附特性的影响
淀粉样前体蛋白(APP)可通过与铜离子和锌离子的结合进行调节。这两种离子与 APP 细胞外结构域的两个亚域(E1 和 E2)的结合亲和力都很低,只有纳摩尔级。然而,离子结合对结构和机械跨二聚化特性的影响尚不清楚。通过珠子聚集试验(BAA),我们发现锌离子会增加两个亚域的二聚化,而铜离子只促进 E1 结构域的二聚化。与此相一致,扫描力谱(SFS)分析表明,铜和锌能使 APP 的粘附力增加三倍。但有趣的是,铜并没有改变 APP 二聚体的分离长度,而高浓度的锌则会导致结构特征的改变和分离长度的减少。总之,我们的数据提供了铜和锌介导的 APP 跨二聚体化的明显差异,并表明锌结合可能有利于较不灵活的 APP 结构。由于在阿尔茨海默病(AD)中可观察到锌和铜离子平衡的变化,并且有报道称这种变化会影响突触的可塑性,因此这一事实具有重大意义。因此,铜和锌对APP反式二聚化的调节可能会导致阿尔茨海默病早期突触的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Chemistry
Biological Chemistry 生物-生化与分子生物学
CiteScore
7.20
自引率
0.00%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信