A comparison of lipid diffusive dynamics in monolayers and bilayers in the context of interleaflet coupling

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Titas Mandal , Nadine Brandt , Carmelo Tempra , Matti Javanainen , Balázs Fábián , Salvatore Chiantia
{"title":"A comparison of lipid diffusive dynamics in monolayers and bilayers in the context of interleaflet coupling","authors":"Titas Mandal ,&nbsp;Nadine Brandt ,&nbsp;Carmelo Tempra ,&nbsp;Matti Javanainen ,&nbsp;Balázs Fábián ,&nbsp;Salvatore Chiantia","doi":"10.1016/j.bbamem.2024.184388","DOIUrl":null,"url":null,"abstract":"<div><div>Cellular membranes are composed of lipids typically organized in a double-leaflet structure. Interactions between these two leaflets – often referred to as interleaflet coupling – play a crucial role in various cellular processes. Despite extensive study, the mechanisms governing such interactions remain incompletely understood. Here, we investigate the effects of interleaflet coupling from a specific point of view, i.e. by comparing diffusive dynamics in bilayers and monolayers, focusing on potential lipid-specific interactions between opposing leaflets. Through quantitative fluorescence microscopy techniques, we characterize lipid diffusion and mean molecular area in monolayers and bilayers composed of different lipids. Our results suggest that the observed decrease in bilayer lipid diffusion compared to monolayers depends on lipid identity. Furthermore, our analysis suggests that lipid acyl chain structure and spatial configuration at the bilayer may strongly influence interleaflet interactions and dynamics in bilayers. These findings provide insights into the role of lipid structure in mediating interleaflet coupling and underscore the need for further experimental investigations to elucidate the underlying mechanisms.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624001196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular membranes are composed of lipids typically organized in a double-leaflet structure. Interactions between these two leaflets – often referred to as interleaflet coupling – play a crucial role in various cellular processes. Despite extensive study, the mechanisms governing such interactions remain incompletely understood. Here, we investigate the effects of interleaflet coupling from a specific point of view, i.e. by comparing diffusive dynamics in bilayers and monolayers, focusing on potential lipid-specific interactions between opposing leaflets. Through quantitative fluorescence microscopy techniques, we characterize lipid diffusion and mean molecular area in monolayers and bilayers composed of different lipids. Our results suggest that the observed decrease in bilayer lipid diffusion compared to monolayers depends on lipid identity. Furthermore, our analysis suggests that lipid acyl chain structure and spatial configuration at the bilayer may strongly influence interleaflet interactions and dynamics in bilayers. These findings provide insights into the role of lipid structure in mediating interleaflet coupling and underscore the need for further experimental investigations to elucidate the underlying mechanisms.

Abstract Image

在小叶间耦合的背景下比较单层和双层中的脂质扩散动力学。
细胞膜由脂质组成,通常呈双叶结构。这两个小叶之间的相互作用(通常称为小叶间耦合)在各种细胞过程中起着至关重要的作用。尽管进行了广泛的研究,但人们对这种相互作用的机制仍不甚了解。在这里,我们从一个特定的角度研究了小叶间耦合的影响,即通过比较双层膜和单层膜中的扩散动力学,重点研究对立小叶间潜在的脂质特异性相互作用。通过定量荧光显微镜技术,我们描述了由不同脂质组成的单层和双层中的脂质扩散和平均分子面积。我们的结果表明,与单层膜相比,观察到的双层膜脂质扩散的减少取决于脂质的特性。此外,我们的分析表明,脂质酰基链结构和双分子层的空间构型可能会强烈影响双分子层中小叶间的相互作用和动力学。这些发现让我们深入了解了脂质结构在介导小叶间耦合中的作用,并强调了进一步开展实验研究以阐明内在机制的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信