Anticancer Properties Against Select Cancer Cell Lines and Metabolomics Analysis of Tender Coconut Water.

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Jaganathan Lakshmanan, Vaitheesh L Jaganathan, Boachun Zhang, Grace Werner, Tyler S Allen, David J Schultz, Carolyn M Klinge, Brian G Harbrecht
{"title":"Anticancer Properties Against Select Cancer Cell Lines and Metabolomics Analysis of Tender Coconut Water.","authors":"Jaganathan Lakshmanan, Vaitheesh L Jaganathan, Boachun Zhang, Grace Werner, Tyler S Allen, David J Schultz, Carolyn M Klinge, Brian G Harbrecht","doi":"10.2174/0118715206327789241008162423","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains in bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW's anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined.</p><p><strong>Objective: </strong>In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity.</p><p><strong>Methodology: </strong>Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW's anticancer properties and to identify mechanism of action. Liquid chromatography- Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components.</p><p><strong>Results: </strong>TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the 'epithelial-to-mesenchymal' (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triplenegative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells.</p><p><strong>Conclusion: </strong>TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206327789241008162423","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains in bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW's anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined.

Objective: In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity.

Methodology: Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW's anticancer properties and to identify mechanism of action. Liquid chromatography- Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components.

Results: TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the 'epithelial-to-mesenchymal' (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triplenegative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells.

Conclusion: TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.

嫩椰子水对部分癌症细胞株的抗癌特性及代谢组学分析
背景:嫩椰子水(TCW)是一种营养丰富的膳食补充剂,含有生物活性次生代谢物和植物激素,具有抗氧化和抗炎特性。目前有关脆皮水抗癌特性的研究还很有限,其抗癌作用的机制也尚未明确:在本研究中,我们对 TCW 的抗癌特性进行了研究,并利用非靶向代谢组学,确定了 TCW 中具有潜在抗癌活性的成分:方法:采用细胞活力测定法、BrdU结合测定法、软琼脂测定法、流式细胞仪和Western印迹法分析TCW的抗癌特性,并确定其作用机制。液相色谱-串联质谱(LC-MS/MS)用于鉴定TCW的成分:结果:TCW降低了HepG2肝细胞癌(HCC)细胞的存活率和锚定依赖性生长,并导致S期细胞周期停滞。TCW抑制了AKT和ERK磷酸化,导致HepG2细胞中ZEB1蛋白减少、E-cadherin增加和N-cadherin蛋白表达减少,从而逆转了 "上皮细胞向间质细胞"(EMT)的转变。TCW 还能降低 Hep3B 肝癌、HCT-15 结肠癌、MCF-7 和 T47D 管腔 A 型乳腺癌(BC)以及 MDA-MB-231 和 MDA-MB-468 三阴性 BC 细胞的存活率。重要的是,TCW 不会抑制 MCF-10A 正常乳腺上皮细胞的活力。对 TCW 进行的非靶向代谢组学分析发现了 271 种代谢物,主要是脂类和类脂分子、苯丙酮类和多酮类化合物以及有机氧化合物。我们证明,TCW 的三种成分:3-羟基-1-(4-羟基苯基)丙-1-酮、离子吲哚-3-甲醛和咖啡酸可抑制癌细胞的生长:结论:TCW 及其成分具有抗癌作用。结论:TCW 及其成分具有抗癌作用。TCW 通过抑制 AKT 和 ERK 信号,逆转 EMT 过程,从而抑制 HepG2 肝癌细胞的活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Anti-cancer agents in medicinal chemistry
Anti-cancer agents in medicinal chemistry ONCOLOGY-CHEMISTRY, MEDICINAL
CiteScore
5.10
自引率
3.60%
发文量
323
审稿时长
4-8 weeks
期刊介绍: Formerly: Current Medicinal Chemistry - Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents. Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication. Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信