Large animal models enhance the study of crypt-mediated epithelial recovery from prolonged intestinal ischemia reperfusion injury.

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Caroline A McKinney-Aguirre, Cecilia R Schaaf, Elizabeth Goya-Jorge, John M Freund, Liara M Gonzalez
{"title":"Large animal models enhance the study of crypt-mediated epithelial recovery from prolonged intestinal ischemia reperfusion injury.","authors":"Caroline A McKinney-Aguirre, Cecilia R Schaaf, Elizabeth Goya-Jorge, John M Freund, Liara M Gonzalez","doi":"10.1152/ajpgi.00236.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal ischemia and reperfusion injury (IRI) is a deadly and common condition. Death is associated with sepsis due to insufficient epithelial repair, requiring stem cell-driven regeneration, typically beginning 48 h after injury. Animal models are critical to advancing this field. To effectively study epithelial healing, models must survive clinically relevant intestinal ischemic injury extending to the crypt. Although mouse models are indispensable to intestinal research, their application for studying epithelial repair following severe IRI may be limited. Ischemic injury was induced in mouse and porcine jejunum for up to 3 h, with up to 72 h of reperfusion. Histologic damage was scored by Chiu-Park grade, and animal survival was assessed. Findings were compared between species. A mouse IRI literature review was performed to evaluate the purported degree of injury, duration of recovery, and reported survival rates. In mice and pigs, 3 h of ischemia induced severe, reliable injury extending into the crypt. However, at 48 h, mouse survival was only 23.5% compared with 100% survival in pigs. In literature, ischemia was induced for >1 h in only 4 of 102 mouse studies and none to 3 h. Recovery was attempted for 48 h in only six reports. Forty-seven studies reported intestinal crypt injury. Of those that featured histologic intestinal crypt damage, survival rates at 48 h ranged from 10 to 50% (median 30%). Mouse models are not ideal for studying intestinal stem cell-mediated recovery from severe IRI. Alternative large animal models, like pigs, are recommended.<b>NEW & NOTEWORTHY</b> Additional research is needed to improve recovery from severe intestinal ischemia. The selection of the ideal animal model is critical to facilitating this work. Based on our experimentation and literature review, porcine models, with increased translatability and an improved ability to survive both prolonged ischemia and the recovery period, appear to be the most appropriate choice for future studies.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G783-G788"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00236.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intestinal ischemia and reperfusion injury (IRI) is a deadly and common condition. Death is associated with sepsis due to insufficient epithelial repair, requiring stem cell-driven regeneration, typically beginning 48 h after injury. Animal models are critical to advancing this field. To effectively study epithelial healing, models must survive clinically relevant intestinal ischemic injury extending to the crypt. Although mouse models are indispensable to intestinal research, their application for studying epithelial repair following severe IRI may be limited. Ischemic injury was induced in mouse and porcine jejunum for up to 3 h, with up to 72 h of reperfusion. Histologic damage was scored by Chiu-Park grade, and animal survival was assessed. Findings were compared between species. A mouse IRI literature review was performed to evaluate the purported degree of injury, duration of recovery, and reported survival rates. In mice and pigs, 3 h of ischemia induced severe, reliable injury extending into the crypt. However, at 48 h, mouse survival was only 23.5% compared with 100% survival in pigs. In literature, ischemia was induced for >1 h in only 4 of 102 mouse studies and none to 3 h. Recovery was attempted for 48 h in only six reports. Forty-seven studies reported intestinal crypt injury. Of those that featured histologic intestinal crypt damage, survival rates at 48 h ranged from 10 to 50% (median 30%). Mouse models are not ideal for studying intestinal stem cell-mediated recovery from severe IRI. Alternative large animal models, like pigs, are recommended.NEW & NOTEWORTHY Additional research is needed to improve recovery from severe intestinal ischemia. The selection of the ideal animal model is critical to facilitating this work. Based on our experimentation and literature review, porcine models, with increased translatability and an improved ability to survive both prolonged ischemia and the recovery period, appear to be the most appropriate choice for future studies.

大型动物模型有助于研究隐窝介导的上皮细胞从长期肠道缺血再灌注损伤中恢复。
肠缺血再灌注损伤(IRI)是一种致命的常见病。死亡与败血症有关,因为上皮修复不足,需要干细胞驱动再生,通常在损伤后48小时开始。动物模型对于推动这一领域的发展至关重要。要有效研究上皮愈合,模型必须在临床相关的肠缺血性损伤延伸到隐窝后存活。虽然小鼠模型在肠道研究中不可或缺,但它们在研究严重IRI后上皮修复方面的应用可能有限。小鼠和猪空肠缺血损伤时间长达 3 小时,再灌注时间长达 72 小时。组织学损伤按 Chiu-Park 分级评分,并评估动物存活率。对不同物种的研究结果进行了比较。对小鼠 IRI 文献进行了回顾,以评估所谓的损伤程度、恢复持续时间和报告的存活率。在小鼠和猪中,3 小时的缺血会导致严重、可靠的损伤,并延伸到隐窝。然而,48 小时后,小鼠的存活率仅为 23.5%,而猪的存活率则为 100%。在文献中,102 项小鼠研究中只有 4 项研究诱导缺血时间超过 1 小时,没有一项研究诱导缺血时间超过 3 小时。只有 6 篇报告尝试了 48 小时的恢复。47 项研究报告了肠隐窝损伤。在组织学意义上的肠隐窝损伤中,48 小时的存活率为 10%-50%(中位数为 30%)。小鼠模型并不是研究肠干细胞介导的严重IRI恢复的理想模型。建议使用猪等其他大型动物模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信