Michael Momoh, Sudiksha Rathan-Kumar, Andreanna Burman, Monica E Brown, Francisca Adeniran, Cynthia Ramos, James R Goldenring, Joseph T Roland, Izumi Kaji
{"title":"Alterations in cellular metabolic pathway and epithelial cell maturation induced by MYO5B defects are partially reversible by LPAR5 activation.","authors":"Michael Momoh, Sudiksha Rathan-Kumar, Andreanna Burman, Monica E Brown, Francisca Adeniran, Cynthia Ramos, James R Goldenring, Joseph T Roland, Izumi Kaji","doi":"10.1152/ajpgi.00091.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Functional loss of the motor protein, Myosin Vb (MYO5B), induces various defects in intestinal epithelial function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). Utilizing the MVID model mice, <i>Vil1-Cre<sup>ERT2</sup>;Myo5b<sup>flox/flox</sup></i> (MYO5B∆IEC) and <i>Vil1-Cre<sup>ERT2</sup>;Myo5b<sup>flox/G519R</sup></i> (MYO5B(G519R)), we previously reported that functional MYO5B loss disrupts progenitor cell differentiation and enterocyte maturation that result in villus blunting and deadly malabsorption symptoms. In this study, we determined that both absence and a point mutation of MYO5B impair lipid metabolism and alter mitochondrial structure, which may underlie the progenitor cell malfunction observed in MVID intestine. Along with a decrease in fatty acid oxidation, the lipogenesis pathway was enhanced in the MYO5B∆IEC small intestine. Consistent with these observations <i>in vivo</i>, RNA-sequencing of enteroids generated from the two MVID mouse strains showed similar downregulation of energy metabolic enzymes, including mitochondrial oxidative phosphorylation genes. In our previous studies, lysophosphatidic acid (LPA) signaling ameliorates epithelial cell defects in MYO5B∆IEC tissues and enteroids. The present study demonstrated that the highly soluble LPAR5-preferred agonist, Compound-1, improved sodium transporter localization and absorptive function, and tuft cell differentiation in patient-modeled MVID animals that carry independent mutations in MYO5B. Body weight loss in male MYO5B(G519R) mice was ameliorated by Compound-1. These observations suggest that Compound-1 treatment has a trophic effect on intestine with MYO5B functional loss through epithelial cell-autonomous pathways that can accelerate the differentiation of progenitor cells and the maturation of enterocytes. Targeting LPAR5 may represent an effective therapeutic approach for treatment of MVID symptoms induced by different point mutations in MYO5B.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00091.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Functional loss of the motor protein, Myosin Vb (MYO5B), induces various defects in intestinal epithelial function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). Utilizing the MVID model mice, Vil1-CreERT2;Myo5bflox/flox (MYO5B∆IEC) and Vil1-CreERT2;Myo5bflox/G519R (MYO5B(G519R)), we previously reported that functional MYO5B loss disrupts progenitor cell differentiation and enterocyte maturation that result in villus blunting and deadly malabsorption symptoms. In this study, we determined that both absence and a point mutation of MYO5B impair lipid metabolism and alter mitochondrial structure, which may underlie the progenitor cell malfunction observed in MVID intestine. Along with a decrease in fatty acid oxidation, the lipogenesis pathway was enhanced in the MYO5B∆IEC small intestine. Consistent with these observations in vivo, RNA-sequencing of enteroids generated from the two MVID mouse strains showed similar downregulation of energy metabolic enzymes, including mitochondrial oxidative phosphorylation genes. In our previous studies, lysophosphatidic acid (LPA) signaling ameliorates epithelial cell defects in MYO5B∆IEC tissues and enteroids. The present study demonstrated that the highly soluble LPAR5-preferred agonist, Compound-1, improved sodium transporter localization and absorptive function, and tuft cell differentiation in patient-modeled MVID animals that carry independent mutations in MYO5B. Body weight loss in male MYO5B(G519R) mice was ameliorated by Compound-1. These observations suggest that Compound-1 treatment has a trophic effect on intestine with MYO5B functional loss through epithelial cell-autonomous pathways that can accelerate the differentiation of progenitor cells and the maturation of enterocytes. Targeting LPAR5 may represent an effective therapeutic approach for treatment of MVID symptoms induced by different point mutations in MYO5B.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.