Identification of novel genomic hotspots and tumor-relevant genes via comprehensive analysis of HPV integration in Chinese patients of cervical cancer.
Xiao-Sheng Xu, Yu-Shui Ma, Rong-Hua Dai, Huan-Le Zhang, Qin-Xin Yang, Qi-Yu Fan, Xin-Yun Liu, Ji-Bin Liu, Wei-Wei Feng, He Meng, Da Fu, Hong Yu, Jian Shen
{"title":"Identification of novel genomic hotspots and tumor-relevant genes via comprehensive analysis of HPV integration in Chinese patients of cervical cancer.","authors":"Xiao-Sheng Xu, Yu-Shui Ma, Rong-Hua Dai, Huan-Le Zhang, Qin-Xin Yang, Qi-Yu Fan, Xin-Yun Liu, Ji-Bin Liu, Wei-Wei Feng, He Meng, Da Fu, Hong Yu, Jian Shen","doi":"10.62347/KKLE8602","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer accounts for 10-15% of cancer-related mortality among women globally. Infection with high-risk human papillomavirus (HPV) types constitutes a significant etiological factor in the development of cervical carcinoma. The integration of HPV DNA into the host genome is considered a pivotal event in cervical carcinogenesis. Nevertheless, the precise mechanisms underlying HPV integration and its role in promoting cancer progression remain inadequately understood. Therefore, this study aims to identify potential common denominators at HPV DNA integration sites and to analyze the adjacent cellular sequences. We conducted whole-genome sequencing on 13 primary cervical cancer samples, employing the chromosomal coordinates of 537 breakpoints to assess the statistical overrepresentation of integration sites in relation to various chromatin features. Our analysis, which encompassed all chromosomes, identified several integration hotspots within the human genome, notably at 14q32.2, 10p15, and 2q37. Additionally, our findings indicated a preferential integration of HPV DNA into intragenic and gene-dense regions of human chromosomes. A substantial number of host cellular genes impacted by the integration sites were associated with cancer, including IKZF2, IL26, AHRR, and PDCD6. Furthermore, the cellular genes targeted by integration were enriched in tumor-related terms and pathways, as demonstrated by gene ontology and KEGG analysis. In conclusion, these findings enhance our understanding of HPV integration sites and provide deeper insights into the molecular mechanisms underlying the pathogenesis of cervical carcinoma.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 9","pages":"4665-4682"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477843/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/KKLE8602","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cervical cancer accounts for 10-15% of cancer-related mortality among women globally. Infection with high-risk human papillomavirus (HPV) types constitutes a significant etiological factor in the development of cervical carcinoma. The integration of HPV DNA into the host genome is considered a pivotal event in cervical carcinogenesis. Nevertheless, the precise mechanisms underlying HPV integration and its role in promoting cancer progression remain inadequately understood. Therefore, this study aims to identify potential common denominators at HPV DNA integration sites and to analyze the adjacent cellular sequences. We conducted whole-genome sequencing on 13 primary cervical cancer samples, employing the chromosomal coordinates of 537 breakpoints to assess the statistical overrepresentation of integration sites in relation to various chromatin features. Our analysis, which encompassed all chromosomes, identified several integration hotspots within the human genome, notably at 14q32.2, 10p15, and 2q37. Additionally, our findings indicated a preferential integration of HPV DNA into intragenic and gene-dense regions of human chromosomes. A substantial number of host cellular genes impacted by the integration sites were associated with cancer, including IKZF2, IL26, AHRR, and PDCD6. Furthermore, the cellular genes targeted by integration were enriched in tumor-related terms and pathways, as demonstrated by gene ontology and KEGG analysis. In conclusion, these findings enhance our understanding of HPV integration sites and provide deeper insights into the molecular mechanisms underlying the pathogenesis of cervical carcinoma.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.