From `crystallographic accuracy' to `thermodynamic accuracy': a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor®).
Jacco van de Streek, Dzmitry Firaha, James A Kaduk, Thomas N Blanton
{"title":"From `crystallographic accuracy' to `thermodynamic accuracy': a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor<sup>®</sup>).","authors":"Jacco van de Streek, Dzmitry Firaha, James A Kaduk, Thomas N Blanton","doi":"10.1107/S2052520624008722","DOIUrl":null,"url":null,"abstract":"<p><p>With ever-improving quantum-mechanical computational methods, the accuracy requirements for experimental crystal structures increase. The crystal structure of calcium atorvastatin trihydrate, which has 56 degrees of freedom when determined with a real-space algorithm, was determined from powder diffraction data by Hodge et al. [Powder Diffr. (2020), 35, 136-143]. The crystal structure was a good fit to the experimental data, indicating that the electron density had been captured essentially correctly, but two independent quantum-mechanical calculations disagreed with the experimental structure and with each other. Using the same experimental data, the crystal structure was redetermined from scratch and it was shown that it can be reproduced within a root-mean-square Cartesian displacement of 0.1 Å by two independent quantum-mechanical calculations. The consequences for the calculated energies and solubilities are described.</p>","PeriodicalId":7320,"journal":{"name":"Acta crystallographica Section B, Structural science, crystal engineering and materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica Section B, Structural science, crystal engineering and materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520624008722","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With ever-improving quantum-mechanical computational methods, the accuracy requirements for experimental crystal structures increase. The crystal structure of calcium atorvastatin trihydrate, which has 56 degrees of freedom when determined with a real-space algorithm, was determined from powder diffraction data by Hodge et al. [Powder Diffr. (2020), 35, 136-143]. The crystal structure was a good fit to the experimental data, indicating that the electron density had been captured essentially correctly, but two independent quantum-mechanical calculations disagreed with the experimental structure and with each other. Using the same experimental data, the crystal structure was redetermined from scratch and it was shown that it can be reproduced within a root-mean-square Cartesian displacement of 0.1 Å by two independent quantum-mechanical calculations. The consequences for the calculated energies and solubilities are described.
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.