Met4DX: A Unified and Versatile Data Processing Tool for Multidimensional Untargeted Metabolomics Data.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Yandong Yin, Mingdu Luo, Zheng-Jiang Zhu
{"title":"Met4DX: A Unified and Versatile Data Processing Tool for Multidimensional Untargeted Metabolomics Data.","authors":"Yandong Yin, Mingdu Luo, Zheng-Jiang Zhu","doi":"10.1021/jasms.4c00290","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid chromatography-mass spectrometry (LC-MS) is a powerful tool in untargeted metabolomics, enabling the high-sensitivity and high-specificity characterization of metabolites. The integration of ion mobility (IM) with LC-MS, known as LC-IM-MS, enhances the analytical depth, facilitating more comprehensive metabolite profiling. However, the complexity of data generated by these technologies presents significant challenges in data processing. Addressing these challenges, we developed Met4DX, a unified and versatile software tool for processing both 3D and 4D untargeted metabolomics data. Met4DX incorporates a new MS1-oriented peak detection approach coupled with our bottom-up assembly algorithm, enabling highly sensitive and comprehensive peak detection in untargeted metabolomics data. Additionally, Met4DX employs a uniform quantification strategy to enhance the precision of peak integration across different samples. The software provides a user-friendly interface that simplifies data processing with default parameter sets, consolidating peak detection, alignment, quantification, and other procedures into a single streamlined workflow. Together, Met4DX offers a comprehensive solution for multidimensional metabolomics data processing, transforming raw data from diverse MS instruments into a final feature table containing quantification and identification results. We postulate Met4DX facilitates metabolite discovery in biological samples by deciphering the complex untargeted metabolomics data. Met4DX is freely available on the Internet (https://met4dx.zhulab.cn/).</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00290","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid chromatography-mass spectrometry (LC-MS) is a powerful tool in untargeted metabolomics, enabling the high-sensitivity and high-specificity characterization of metabolites. The integration of ion mobility (IM) with LC-MS, known as LC-IM-MS, enhances the analytical depth, facilitating more comprehensive metabolite profiling. However, the complexity of data generated by these technologies presents significant challenges in data processing. Addressing these challenges, we developed Met4DX, a unified and versatile software tool for processing both 3D and 4D untargeted metabolomics data. Met4DX incorporates a new MS1-oriented peak detection approach coupled with our bottom-up assembly algorithm, enabling highly sensitive and comprehensive peak detection in untargeted metabolomics data. Additionally, Met4DX employs a uniform quantification strategy to enhance the precision of peak integration across different samples. The software provides a user-friendly interface that simplifies data processing with default parameter sets, consolidating peak detection, alignment, quantification, and other procedures into a single streamlined workflow. Together, Met4DX offers a comprehensive solution for multidimensional metabolomics data processing, transforming raw data from diverse MS instruments into a final feature table containing quantification and identification results. We postulate Met4DX facilitates metabolite discovery in biological samples by deciphering the complex untargeted metabolomics data. Met4DX is freely available on the Internet (https://met4dx.zhulab.cn/).

Met4DX:用于多维非靶向代谢组学数据的统一、多功能数据处理工具。
液相色谱-质谱(LC-MS)是非靶向代谢组学的强大工具,可对代谢物进行高灵敏度和高特异性表征。离子迁移率(IM)与液相色谱-质谱(LC-IM-MS)的整合提高了分析深度,有助于进行更全面的代谢物分析。然而,这些技术产生的数据非常复杂,给数据处理带来了巨大挑战。为了应对这些挑战,我们开发了 Met4DX,这是一种统一的多功能软件工具,用于处理三维和四维非靶向代谢组学数据。Met4DX 采用了一种新的以 MS1 为导向的峰值检测方法,并结合了我们的自下而上组装算法,实现了对非靶向代谢组学数据的高灵敏度和全面的峰值检测。此外,Met4DX 还采用了统一的定量策略,以提高不同样本中峰值整合的精确度。该软件提供友好的用户界面,利用默认参数集简化数据处理,将峰检测、配准、定量和其他程序整合到一个精简的工作流程中。Met4DX 为多维代谢组学数据处理提供了全面的解决方案,可将来自不同质谱仪的原始数据转化为包含定量和鉴定结果的最终特征表。我们推测,Met4DX 通过破译复杂的非靶向代谢组学数据,有助于发现生物样本中的代谢物。Met4DX 可在互联网(https://met4dx.zhulab.cn/)上免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信