Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2025-02-01 Epub Date: 2024-10-16 DOI:10.1016/j.jcis.2024.10.073
Youcun Bai, Zhixian Wu, Qidong Lv, Wei Sun, Wenhao Liang, Xin Xia, Heng Zhang, Chang Ming Li
{"title":"Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery.","authors":"Youcun Bai, Zhixian Wu, Qidong Lv, Wei Sun, Wenhao Liang, Xin Xia, Heng Zhang, Chang Ming Li","doi":"10.1016/j.jcis.2024.10.073","DOIUrl":null,"url":null,"abstract":"<p><p>Vanadium-based oxides have good application prospects in aqueous zinc ion batteries (AZIBs) due to their structures suitable for zinc ion extraction and intercalation. However, their poor conductivity limits their further development. The d-band center plays a key role in promoting adsorption of ions, which promotes the development of electrode materials. Here, a series of MoV<sub>2</sub>O<sub>8</sub> compounds with oxygen defect (O<sub>d</sub>-MoV<sub>2</sub>O<sub>8</sub>) were synthesized by a simple hydrothermal process and a subsequent vacuum calcination process through strict control of the deoxidation time. Theoretical calculations reveal that the abundant oxygen vacancies in MoV<sub>2</sub>O<sub>8</sub> effectively regulate the d-band center of the zinc ion adsorption site. This precise control of the d-band center enhances the zinc ion adsorption energy of MoV<sub>2</sub>O<sub>8</sub>, lowers the migration energy barrier for zinc ions, and ultimately significantly boosts zinc storage performance. The specific capacity is as high as 282.4 mAh/g after 100 cycles at 0.1 A/g, and it also shows excellent performance and outstanding cycle life. In addition, the maximum energy density of O<sub>d</sub>-MVO-0.5 (MoV<sub>2</sub>O<sub>8</sub> sample deoxidized for 0.5 h) is 343.3 Wh kg<sup>-1</sup>. Importantly, the mechanism of Zn<sup>2+</sup> storage in O<sub>d</sub>-MoV<sub>2</sub>O<sub>8</sub> was revealed by the combination of in situ and ex situ characterization techniques.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1311-1319"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.10.073","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vanadium-based oxides have good application prospects in aqueous zinc ion batteries (AZIBs) due to their structures suitable for zinc ion extraction and intercalation. However, their poor conductivity limits their further development. The d-band center plays a key role in promoting adsorption of ions, which promotes the development of electrode materials. Here, a series of MoV2O8 compounds with oxygen defect (Od-MoV2O8) were synthesized by a simple hydrothermal process and a subsequent vacuum calcination process through strict control of the deoxidation time. Theoretical calculations reveal that the abundant oxygen vacancies in MoV2O8 effectively regulate the d-band center of the zinc ion adsorption site. This precise control of the d-band center enhances the zinc ion adsorption energy of MoV2O8, lowers the migration energy barrier for zinc ions, and ultimately significantly boosts zinc storage performance. The specific capacity is as high as 282.4 mAh/g after 100 cycles at 0.1 A/g, and it also shows excellent performance and outstanding cycle life. In addition, the maximum energy density of Od-MVO-0.5 (MoV2O8 sample deoxidized for 0.5 h) is 343.3 Wh kg-1. Importantly, the mechanism of Zn2+ storage in Od-MoV2O8 was revealed by the combination of in situ and ex situ characterization techniques.

操纵双金属钒酸钼的 d 波段中心,实现高性能水性锌离子电池。
钒基氧化物具有适合锌离子萃取和插层的结构,因此在锌离子水电池(AZIB)中具有良好的应用前景。然而,它们较差的导电性限制了它们的进一步发展。d 带中心在促进离子吸附方面起着关键作用,从而推动了电极材料的发展。本文通过简单的水热法合成了一系列具有氧缺陷的 MoV2O8 化合物(Od-MoV2O8),并在随后的真空煅烧过程中严格控制脱氧时间。理论计算显示,MoV2O8 中丰富的氧空位可有效调节锌离子吸附位点的 d 带中心。这种对 d 带中心的精确控制增强了 MoV2O8 的锌离子吸附能,降低了锌离子的迁移能垒,最终显著提高了锌的储存性能。在 0.1 A/g 条件下循环 100 次后,比容量高达 282.4 mAh/g,而且性能优异,循环寿命长。此外,Od-MVO-0.5(MoV2O8 样品脱氧 0.5 h)的最大能量密度为 343.3 Wh kg-1。重要的是,通过原位和非原位表征技术的结合,揭示了 Zn2+ 在 Od-MoV2O8 中的储存机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信