Xiao Liu, Jingjing Liu, Huijuan Zhao, Chang Dong, Fengquan Liu, Lin Li
{"title":"In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries.","authors":"Xiao Liu, Jingjing Liu, Huijuan Zhao, Chang Dong, Fengquan Liu, Lin Li","doi":"10.1016/j.jcis.2024.10.023","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical performance of lithium metal batteries (LMBs) was hampered by the uncontrolled growth of lithium (Li) dendrites. To address this issue, the extensive application of artificial solid electrolyte interphase (SEI) coatings on anode surfaces emerged as an effective solution. Electrospinning, as an innovative technique for fabricating artificial SEI layers on the surface of copper (Cu) foil, effectively mitigated Li volume strain during cycling. In this study, an electrospun organic-inorganic composite nanofiber membrane was in-situ fabricated on Cu foil, serving as an artificial SEI layer (CuWs) for anode-free LMBs (AF-LMBs) to enhance battery performance. Lithiophilic polyvinylpyrrolidone was used as the polymer matrix, and Cu nitrate served as the inorganic functional particles capable of in-situ redox reactions. The CuWs with their three-dimensional (3D) network structure accommodated electrode volume changes and suppressed Li dendrite growth during Li deposition and stripping. Additionally, CuWs facilitated the in-situ generation of Li nitrate (LiNO<sub>3</sub>), which helped stabilize SEI layer and enhance Li utilization. The release sites of LiNO<sub>3</sub> on the nanofibers enabled the in-situ reduction of metallic Cu, providing nucleation sites for Li deposition and forming the 3D ion-electron hybrid conductive networks. This CuWs layer reduced interfacial resistance and nucleation barriers, promoting uniform Li<sup>+</sup> distribution on the anode surface. Li-Cu cells incorporating CuWs exhibited remarkable cycling stability, enduring over 460 cycles at 1.0 mA cm<sup>-2</sup> and 1.0 mAh cm<sup>-2</sup> with an average Coulombic efficiency of over 98.6 %. In Li-poor cells, the LFP|PE|CuWs achieved stable cycling for more than 30 cycles at 1.0 C, with a capacity retention rate of 92.0 %. These findings demonstrated that the CuWs membrane significantly enhanced the electrochemical performance of Li-poor cells and provided a novel artificial SEI protective strategy for advanced AF-LMBs with high energy density.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1106-1116"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.10.023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The electrochemical performance of lithium metal batteries (LMBs) was hampered by the uncontrolled growth of lithium (Li) dendrites. To address this issue, the extensive application of artificial solid electrolyte interphase (SEI) coatings on anode surfaces emerged as an effective solution. Electrospinning, as an innovative technique for fabricating artificial SEI layers on the surface of copper (Cu) foil, effectively mitigated Li volume strain during cycling. In this study, an electrospun organic-inorganic composite nanofiber membrane was in-situ fabricated on Cu foil, serving as an artificial SEI layer (CuWs) for anode-free LMBs (AF-LMBs) to enhance battery performance. Lithiophilic polyvinylpyrrolidone was used as the polymer matrix, and Cu nitrate served as the inorganic functional particles capable of in-situ redox reactions. The CuWs with their three-dimensional (3D) network structure accommodated electrode volume changes and suppressed Li dendrite growth during Li deposition and stripping. Additionally, CuWs facilitated the in-situ generation of Li nitrate (LiNO3), which helped stabilize SEI layer and enhance Li utilization. The release sites of LiNO3 on the nanofibers enabled the in-situ reduction of metallic Cu, providing nucleation sites for Li deposition and forming the 3D ion-electron hybrid conductive networks. This CuWs layer reduced interfacial resistance and nucleation barriers, promoting uniform Li+ distribution on the anode surface. Li-Cu cells incorporating CuWs exhibited remarkable cycling stability, enduring over 460 cycles at 1.0 mA cm-2 and 1.0 mAh cm-2 with an average Coulombic efficiency of over 98.6 %. In Li-poor cells, the LFP|PE|CuWs achieved stable cycling for more than 30 cycles at 1.0 C, with a capacity retention rate of 92.0 %. These findings demonstrated that the CuWs membrane significantly enhanced the electrochemical performance of Li-poor cells and provided a novel artificial SEI protective strategy for advanced AF-LMBs with high energy density.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies