Timothé Vucko, Dmytro Strilets, Patrice Soumillion, Benoît Desguin, Stéphane P Vincent
{"title":"Chemo-enzymatic synthesis of NPN cofactor taking advantage of ADP-ribosyl cyclase and LarC cyclometallase promiscuous activities.","authors":"Timothé Vucko, Dmytro Strilets, Patrice Soumillion, Benoît Desguin, Stéphane P Vincent","doi":"10.1016/j.bioorg.2024.107879","DOIUrl":null,"url":null,"abstract":"<p><p>The nickel-pincer nucleotide cofactor (NPN) is a widespread organometallic cofactor required for lactate racemase (LarA) and for α-hydroxy acid racemases and epimerases of the LarA superfamily. Its biosynthesis, which starts with nicotinic acid adenine dinucleotide (NaAD), requires three enzymes: LarB, LarC, and LarE, and can be performed in vitro with purified enzymes. Nevertheless, as LarE and LarC are single turnover enzymes, the in vitro NPN biosynthesis requires huge amounts of enzymes (particularly 2 equivalents of LarE), which hampers the study of NPN and of NPN-dependent enzymes. By using adenosine diphosphate (ADP)-ribosyl cyclase (ARC), we exchanged the nicotinamide moiety in NAD<sup>+</sup> with synthetic pyridine-3,5-bisthiocarboxylic acid in order to synthesize the novel intermediate pyridinium-3,5-bisthiocarboxylic acid adenine dinucleotide (P2TAD). The latter could be produced at a multimilligram scale allowing its characterization by Nuclear Magnetic Resonance (NMR) and mass spectrometry. Interestingly, P2TAD could directly be used by LarC in order to generate the NPN cofactor, bypassing both LarB and LarE. Globally, a new chemoenzymatic route towards NPN was developed via the intermediate P2TAD, which should facilitate the biochemical and biotechnological investigations on NPN binding enzymes.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107879"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107879","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The nickel-pincer nucleotide cofactor (NPN) is a widespread organometallic cofactor required for lactate racemase (LarA) and for α-hydroxy acid racemases and epimerases of the LarA superfamily. Its biosynthesis, which starts with nicotinic acid adenine dinucleotide (NaAD), requires three enzymes: LarB, LarC, and LarE, and can be performed in vitro with purified enzymes. Nevertheless, as LarE and LarC are single turnover enzymes, the in vitro NPN biosynthesis requires huge amounts of enzymes (particularly 2 equivalents of LarE), which hampers the study of NPN and of NPN-dependent enzymes. By using adenosine diphosphate (ADP)-ribosyl cyclase (ARC), we exchanged the nicotinamide moiety in NAD+ with synthetic pyridine-3,5-bisthiocarboxylic acid in order to synthesize the novel intermediate pyridinium-3,5-bisthiocarboxylic acid adenine dinucleotide (P2TAD). The latter could be produced at a multimilligram scale allowing its characterization by Nuclear Magnetic Resonance (NMR) and mass spectrometry. Interestingly, P2TAD could directly be used by LarC in order to generate the NPN cofactor, bypassing both LarB and LarE. Globally, a new chemoenzymatic route towards NPN was developed via the intermediate P2TAD, which should facilitate the biochemical and biotechnological investigations on NPN binding enzymes.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.